UNIT 4 VOCABULARY: FRACTIONS

0. Introduction

A fraction is a number that expresses part of a unit or a part of a quantity. Fractions are written in the form $\frac{a}{b}$ where a and b are integers, and the number b is not 0.	
 A fractions has two parts: The top number <i>a</i> is called the numerator. The number <i>b</i> is called the denominator. 	or tor
READING FRACTIONS!!! We use the cardinals to name the numerator and the ordinals for the denomine For example: $\frac{2}{3}$ > two thirds $\frac{7}{5}$ > seven fifths $\frac{1}{8}$ > one eight	ator.
However, there are three exceptions: • When the denominator is 2, it is read "half". For example: $\frac{1}{2}$ > one half $\frac{3}{2}$ > three halves • When the denominator is 4, it can be read as "fourth" or "quarter". For example: $\frac{1}{4}$ > a fourth or a quarter $\frac{3}{4}$ > three quarters or three fourt • For denominators greater than 10, we say "over" and do not use ordinal. For example: $\frac{12}{15}$ > twelve over fifteen $\frac{17}{32}$ > seventeen over thirty-two	'hs
BE CAREFUL WITH PLURALS! If the numerator is greater than 1, you must use plurals with ordinals. $\frac{5}{2}$ > five halves $\frac{3}{4}$ > three quarters $\frac{7}{10}$ > seven tenth	15

1.1 Fractions as a division

A fraction can express a division.	The numerator is the c	lividend and the denon	ninator is the
divisor.		50	
For example.		53	
$\frac{4}{2} = 4 \div 2 = 2$	$\frac{3}{4}$ =3÷4=0.75	100	= 0.53
<u>Exercise.</u> Divide:			
a) $\frac{7}{2}$ b)	<u>9</u> 10	c) $\frac{5}{4}$	d) <u>5</u>
1.2. Fraction as part of a whole			
• The numerator tells us how	w many equal parts we ł	lave.	
 The denominator tells us the For example: 	now many equal parts ar	e available.	
What fraction of these subes are	$rada = \frac{2}{2}$		
what fraction of these cubes are	6		
What fraction of these cubes for	m a column? $\frac{3}{6}$. 🔁	
What fraction of the b	lue cubes form a column?	$\frac{2}{4}$	
ALL PARTS MUST BE	EQUALIIII		

Exercise. Write and read the fractions that represent the shaded portions.

Exercise. Represent each fraction on this triangles:

1.3. Fraction as an operator

1.4. Proper and improper fractions

 A fraction is proper if the denominator is greater than the numerator. 	Smaller	Larger> 👂
 A fraction is improper if the numerator is grater than the denominator. 	Larger — 5	Smaller> 5
• A fraction is a whole (a unit) if the denominator is equal to the numerator.	Proper Fraction	Improper Fraction

1.6 Sign of a fraction

Each term of a fraction can be positive or negative. You can find four cases (but there are just two indeed):

• If both numerator and denominator have the same sign, the fraction is positive. For example:

$$\frac{+3}{+5} = \frac{3}{5} \qquad \qquad \frac{-2}{-7} = \frac{2}{7}$$

• If both numerator and denominator have **different signs**, the fraction is **negative**. For example:

$$\frac{+4}{-9} = -\frac{4}{9} \qquad \qquad \frac{-6}{+5} = -\frac{6}{5}$$

1.7 Representation of fractions on the number line

Any fraction can be represented on the number line. In a fraction, the denominator tells us the number of equal parts into which the first unit has been divided; the numerator tells us 'how many' of these parts are considered.

So, a rational number such as $\frac{7}{3}$ means four of nine equal parts on the right of 0, and for $-\frac{7}{4}$ we make 7 markings of distance $\frac{1}{4}$ each on the left of zero and starting from 0.

2.1. Equivalent fractions

We can test if two fractions are equivalent by taking the cross-product, this is, two fractions are equivalent if

For example, if we want to test if $\frac{20}{12}$ and $\frac{40}{24}$ are equivalent fractions:

- The first cross-product is the product of the first numerator and the second denominator: $12 \times 40 = 480$.
- The second cross-product is the product of the second numerator and the first denominator: $24 \times 20 = 480$.

The cross-products are the same, so the fractions are equivalent.

Exercise. Test if these fractions are equivalent fractions:

a)
$$\frac{3}{7}$$
 and $\frac{18}{42}$ **b)** $\frac{2}{4}$ and

2.2. Making equivalent fractions

Página 4

?

?

13

20

Starting fraction	Equivalent fractions					
$\frac{1}{3}$	<u>2</u> 6	<u>3</u> 9	<u>4</u> 12	<u>5</u> 15	<u>6</u> 18	<u>7</u> 21
<u>2</u> 5						
<u>8</u> 16						
<u>7</u> 3						

<u>Exercise</u>. Write a sequence of equivalent fractions as in the example:

2.3. Least Common Denominator

When working with frac same. We can use equi	tions, sometimes w valent fractions t	ve need the der o do that.	nominators of two f	ractions to be the
For example, let's write • <u>What is the ne</u>	: ^{+3 3} / _{+5 5} and <mark>7/15</mark> w denominator?	with a common c	denominator.	
The new denomi multiples of 6 LCM (6, 15) = 30 • <u>What is the ne</u> We divide every numerator.	nator is the Lowes 6, 12, 18, 24, 30 , w numerator? new denominator l	t Common Multip 36, by the previous o	ole. multiples 15 → 1 one and we multiply [.]	15, 30 , 45, 60, the result by the
3 0÷6 = 5	30÷15 = 2			
	× 5		× 2	
	$\frac{1}{6} = \frac{5}{30}$	and	$\frac{7}{15} = \frac{14}{30}$	
And that's all!!!				

2.4. Comparing and ordering fractions

REMEMBER! SYMBOLS To compare two numbers, we can use these symbols:					
405	Symbol	Is read	Example	Is read	
	=	Is equal to / equals	$\frac{1}{2}=\frac{2}{4}$	A half equals two quarters	
	¥	Isn't equal to / doesn't equal / is different from	$\frac{2}{3} \neq \frac{3}{2}$	Two thirds doesn't equal three halves	

<	Is less than	$\frac{2}{3} < \frac{3}{4}$	Two thirds is less than three quarters
>	Is greater than	$\frac{5}{3} > \frac{5}{6}$	Five thirds is greater than five sixths
			1

Exercise. For each fraction pair, put them both over a common denominator to see which is bigger.

 $\frac{3}{4} \text{ and } \frac{4}{5} \qquad \qquad \frac{1}{3} \text{ and } \frac{2}{5} \qquad \qquad \frac{13}{20} \text{ and } \frac{7}{10}$

2.5. Simplest form of a fraction

Simplifying (or reducing) a fraction means to make the fraction as simple as possible. 4/8 ==> 2/4 ==> 1/2 (Four-Eighths) (Two-Quarters) (One-Half) (One-Half)

To find the simplest form of a fraction, try dividing both the top and bottom of the fraction until you can't go any further (try dividing by 2,3,5,7,... etc).

Exercises.

1. Find the simplest form of these fractions:

$$\frac{24}{36} = \frac{75}{55} = \frac{84}{240} = \frac{50}{120} =$$

- 2. Express, in the simplest form, which fraction corresponds to these situations:
 - a) In a bag of 90 pens, 15 are blue.
 - **b)** The number of girls and boys in our class.
 - c) There are 90 pupils of the 270 who come by bus to the school.

3.1. Addition and subtraction with fractions

Exercise. Work out:

a)
$$\frac{3}{8} + \frac{1}{4} + \frac{3}{16}$$
 b) $2 + \frac{1}{9} - \frac{3}{5}$ c) $\frac{4}{7} - \frac{2}{3}$ d) $\frac{1}{2} + \frac{1}{3} - \left(\frac{1}{4} + \frac{1}{5}\right)$ e) $\frac{1}{4} - \frac{1}{8} - \left(\frac{1}{3} + \frac{1}{6}\right)$

4.1. Multiplication of fractions

REMEMBER! \rightarrow TIMES/MULTIPLIED BYTo multiply fractions:• Multiply the top numbers (numerators).• Multiply the bottom numbers (denominators).• Simplify the fraction (if possible). $\frac{1}{3} \times \frac{9}{10} = \frac{1 \times 9}{3 \times 10} = \frac{9}{30} = \frac{9 \div 3}{30 \div 3} = \frac{3}{10}$

Exercise. Work out:

	34	213	->	·) 15. ²	J) ⁴ 5	134
α)	29	3 4 5	C)	5	$\frac{a}{3}$ $\frac{-3}{3}$	e) <u></u>

4.2. Division with fractions

REMEMBER! : → DIVIDED BY To divide fractions: • Multiply the numerator of the first fraction second.	by the denominator of the
 Multiply the denominator of the first fraction by the numerator of the second. Reduce the fraction (if possible). 	$\div \frac{4}{5} = \frac{1 \times 5}{3 \times 4} = \frac{5}{12}$
Exercise. Work out: a) $\frac{4}{5}:\frac{3}{7}$ b) $\frac{9}{12}:7$ c) $\frac{\frac{3}{7}}{\frac{2}{8}}$ 1.4. Order of Operations	$\mathbf{d}) \left(\frac{5}{3} \div \frac{5}{8}\right) \div \frac{7}{4}$
When you have several operations to do, which one do you calculate first? We work out operations in this order: BRACKETS EXPONENTS (Powers, roots, etc) DIVISION and MULTIPLICATION (working from left to right) ADDITION and SUBTRACTION (working from left to right)	Brackets E Exponents D Divide M Multiply A Add S Subtract

That makes **BEDMAS!**

 $\underline{\textbf{Exercise.}}$ Work out these operations:

a)
$$\frac{5}{2} \cdot \frac{1}{2} - \frac{4}{3}$$
 b) $\frac{1}{5} + \frac{2}{3} \div \frac{5}{7}$ c) $\frac{1}{4} \cdot \frac{2}{3} + \frac{1}{6} \cdot \frac{3}{2}$ d) $\left(\frac{1}{2} + \frac{2}{5}\right) \div \left(1 - \frac{1}{10}\right)$