UNIT 4 VOCABULARY: FRACTIONS

O. Introduction

A fraction is a number that expresses part of a unit or a part of a quantity.
Fractions are written in the form
$\frac{a}{b}$ where a and b are integers, and the number

b is not 0 .

A fractions has two parts:

- The top number a is called the numerator.
- The number b is called the denominator.

READING FRACTIONS!!!
We use the cardinals to name the numerator and the ordinals for the denominator. For example: $\frac{2}{3} \rightarrow$ two thirds $\quad \frac{7}{5} \rightarrow$ seven fifths $\quad \frac{1}{8} \quad$--> one eight

However, there are three exceptions:

- When the denominator is 2 , it is read "half".

For example: $\frac{1}{2}$--> one half $\frac{3}{2}$--> three halves

- When the denominator is 4 , it can be read as "fourth" or "quarter".

For example: $\frac{1}{4}$--> a fourth or a quarter $\quad \frac{3}{4}$--> three quarters or three fourths

- For denominators greater than 10, we say "over" and do not use ordinal.

For example: $\frac{12}{15} \quad->$ twelve over fifteen $\quad \frac{17}{32} \quad->$ seventeen over thirty-two

BE CAREFUL WITH PLURALS!
If the numerator is greater than 1, you must use plurals with ordinals.
$\frac{5}{2}$--> five halves
$\frac{3}{4}$--> three quarters
$\frac{7}{10}$--> seven tenths

Exercise. Write in words and read the following fractions:

$\frac{11}{4}-$	$\frac{3}{8}$	$\left.\begin{array}{l}9 \\ \frac{17}{2} \\ \frac{1}{12}- \\ \frac{4}{9}\end{array}\right]$
$\frac{14}{93}$	$\frac{19}{62}$	

1.1 Fractions as a division

A fraction can express a division. The numerator is the dividend and the denominator is the divisor.
For example:

Exercise. Divide:
a) $\frac{7}{2}$
b) $\frac{9}{10}$
c) $\frac{5}{4}$
d) $\frac{5}{8}$

1.2. Fraction as part of a whole

- The numerator tells us how many equal parts we have.
- The denominator tells us how many equal parts are available.

For example:
What fraction of these cubes are red? $\rightarrow \frac{2}{6}$
What fraction of these cubes form a column? $\frac{3}{6}$
What fraction of the blue cubes form a column? $\frac{2}{4}$

ALL PARTS MUST BE EQUAL!!!!!

Exercise. Write and read the fractions that represent the shaded portions.

Exercise. Represent each fraction on this triangles:
$\frac{1}{2}$

1.3. Fraction as an operator

A fraction is also an operator. You just multiply by the numerator and divide by the denominator.

For example, to find out $2 / 3$ of 12 eggs, you just operate:
$(12 \cdot 2) \div 3=24 \div 3=8$ eggs.

Exercises.

1. Find out:
a) $\frac{5}{8}$ of 400
b) $\frac{4}{5}$ of 20
c) $\frac{5}{6}$ of 60
2. Fill in the gap:
a) $\frac{3}{4}$ of \qquad are 15
b) $\frac{2}{3}$ of ___ are 40
c) $\frac{4}{5}$ of \qquad are 20

1.4. Proper and improper fractions

- A fraction is proper if the denominator is greater than the numerator.
- A fraction is improper if the numerator is grater than the denominator.
- A fraction is a whole (a unit) if the denominator is equal to the numerator.

Proper
Fraction

Improper
Fraction

1.6 Sign of a fraction

Each term of a fraction can be positive or negative. You can find four cases (but there are just two indeed):

- If both numerator and denominator have the same sign, the fraction is positive. For example:

$$
\frac{+3}{+5}=\frac{3}{5} \quad \frac{-2}{-7}=\frac{2}{7}
$$

- If both numerator and denominator have different signs, the fraction is negative. For example:

$$
\frac{+4}{-9}=-\frac{4}{9} \quad \frac{-6}{+5}=-\frac{6}{5}
$$

1.7 Representation of fractions on the number line

Any fraction can be represented on the number line. In a fraction, the denominator tells us the number of equal parts into which the first unit has been divided; the numerator tells us 'how many' of these parts are considered.
So, a rational number such as $\frac{7}{3}$ means four of nine equal parts on the right of 0 , and for $-\frac{7}{4}$ we make 7 markings of distance $\frac{1}{4}$ each on the left of zero and starting from 0.

2.1. Equivalent fractions

Equivalent fractions are fractions that look different from each other, but are really the same.

We can test if two fractions are equivalent by taking the cross-product, this is, two fractions are equivalent if

$$
a \cdot d=b \cdot c
$$

For example, if we want to test if $\frac{20}{12}$ and $\frac{40}{24}$ are equivalent fractions:

- The first cross-product is the product of the first numerator and the
?
 second denominator: $12 \times 40=480$.
- The second cross-product is the product of the second numerator and the first denominator: $24 \times 20=480$.
The cross-products are the same, so the fractions are equivalent.
Exercise. Test if these fractions are equivalent fractions:
a) $\frac{3}{7}$ and $\frac{18}{42}$
b) $\frac{2}{4}$ and $\frac{13}{20}$

2.2. Making equivalent fractions

You can make equivalent fractions by multiplying both numerator and denominator by the same amount.

Exercise. Write a sequence of equivalent fractions as in the example:

Starting fraction	Equivalent fractions					
$\frac{1}{3}$	$\frac{2}{6}$	$\frac{3}{9}$	$\frac{4}{12}$	$\frac{5}{15}$	$\frac{6}{18}$	$\frac{7}{21}$
$\frac{2}{5}$						
$\frac{8}{16}$						
$\frac{7}{3}$						

2.3. Least Common Denominator

When working with fractions, sometimes we need the denominators of two fractions to be the same. We can use equivalent fractions to do that.

For example, let's write $\frac{+33}{+5}=\frac{3}{5}$ and $\frac{7}{15}$ with a common denominator.

- What is the new denominator?

The new denominator is the Lowest Common Multiple.
multiples of $6 \rightarrow 6,12,18,24,30,36, \ldots$ multiples $15 \rightarrow 15,30,45,60, \ldots$ $\operatorname{LCM}(6,15)=30$.

- What is the new numerator?

We divide every new denominator by the previous one and we multiply the result by the numerator.
$30 \div 6=5$

And that's all!!!

2.4. Comparing and ordering fractions

REMEMBER! SYMBOLS

To compare two numbers, we can use these symbols:

Symbol	Is read	Example	Is read
$=$	Is equal to / equals	$\frac{1}{2}=\frac{2}{4}$	A half equals two quarters
\neq	Isn't equal to / doesn't equal / is different from	$\frac{2}{3} \neq \frac{3}{2}$	Two thirds doesn't equal three halves

$<$	Is less than	$\frac{2}{3}<\frac{3}{4}$	Two thirds is less than three quarters
$>$	Is greater than	$\frac{5}{3}>\frac{5}{6}$	Five thirds is greater than five sixths

- If two fractions have the same denominator then they are easy to compare. Look at their numerators, and the largest fraction is the one with the largest numerator.
For example, $\frac{4}{9}$ is less than $\frac{5}{9}$ (because 4 is less than 5)

$$
\frac{4}{9}<\frac{5}{9}
$$

- If the denominators are not the same, you need to make them the same (see the previous section).
For example, $\frac{3}{8}$ and $\frac{5}{12}$

So $\frac{3}{8}<\frac{5}{12}$

Exercise. For each fraction pair, put them both over a common denominator to see which is bigger.
$\frac{3}{4}$ and $\frac{4}{5} \quad \frac{1}{3}$ and $\frac{2}{5} \quad \frac{13}{20}$ and $\frac{7}{10}$

2.5. Simplest form of a fraction

Simplifying (or reducing) a fraction means to make the fraction as simple as possible.

To find the simplest form of a fraction, try dividing both the top and bottom of the fraction until you can't go any further (try dividing by 2,3,5,7,... etc).

For example, to reduce $\frac{24}{108}$ to its lowest terms:

Exercises.

1. Find the simplest form of these fractions:
$\frac{24}{36}=$
$\frac{75}{55}=$
$\frac{84}{240}=$
$\frac{50}{120}=$
2. Express, in the simplest form, which fraction corresponds to these situations:
a) In a bag of 90 pens, 15 are blue.
b) The number of girls and boys in our class.
c) There are 90 pupils of the 270 who come by bus to the school.

3.1. Addition and subtraction with fractions

REMEMBER!

PLUS

MINUS

To add or subtract fractions:

- If the fractions have the same denominator, the numerator of the sum or the difference is found by simply adding or subtracting the numerators over the denominator.
For example, $\frac{2}{4}+\frac{3}{4}=\frac{2+3}{4}=\frac{5}{4} \quad \frac{2}{4}-\frac{3}{4}=\frac{2-3}{4}=-\frac{1}{4}$

REDUCE ALWAYS WHEN POSSIBLE !!!!

- If the denominators are different, follow these steps:
- Reduce them to a common denominator (see comparing fractions).
- Add or subtract the numerators and do not change the denominator.
- Reduce (if possible).

For example, to find out $\frac{5}{6}-2+\frac{9}{4}$. The LCM of 6 and 4 is 12 , so

$$
\frac{5}{6}-2+\frac{9}{4}=\frac{10-24+27}{12}=\frac{13}{12}
$$

Exercise. Work out:
a) $\frac{3}{8}+\frac{1}{4}+\frac{3}{16}$
b) $2+\frac{1}{9}-\frac{3}{5}$
c) $\frac{4}{7}-\frac{2}{3}$
d) $\frac{1}{2}+\frac{1}{3}-\left(\frac{1}{4}+\frac{1}{5}\right)$
e) $\frac{1}{4}-\frac{1}{8}-\left(\frac{1}{3}+\frac{1}{6}\right)$

4.1. Multiplication of fractions

REMEMBER! . \rightarrow TIMES/MULTIPLIED BY

To multiply fractions:

- Multiply the top numbers (numerators).
- Multiply the bottom numbers (denominators).
- Simplify the fraction (if possible).

$$
\frac{1}{3} \times \frac{9}{10}=\frac{1 \times 9}{3 \times 10}=\frac{9}{30}=\frac{9 \div 3}{30 \div 3}=\frac{3}{10}
$$

Exercise. Work out:
a) $\frac{3}{2} \cdot \frac{4}{9}$
b) $\frac{2}{3} \cdot \frac{1}{4} \cdot \frac{3}{5}$
c) $15 \cdot \frac{2}{5}$
d) $\frac{4}{3} \cdot 5$
e) $\frac{1}{9} \cdot \frac{3}{11} \cdot \frac{4}{7}$

4.2. Division with fractions

REMEMBER! DIVIDED BY

To divide fractions:

- Multiply the numerator of the first fraction by the denominator of the second.
- Multiply the denominator of the first fraction by the numerator of the second.
- Reduce the fraction (if possible).

$$
\frac{1}{3} \div \frac{4}{5}=\frac{1 \times 5}{3 \times 4}=\frac{5}{12}
$$

Exercise. Work out:
a) $\frac{4}{5}: \frac{3}{7}$
b) $\frac{9}{12}: 7$
c) $\frac{7}{\frac{2}{8}}$
d) $\left(\frac{5}{3} \div \frac{5}{8}\right) \div \frac{7}{4}$

1.4. Order of Operations

When you have several operations to do, which one do you calculate first?

We work out operations in this order:

BRACKETS
EXPONENTS (Powers, roots, etc)
DIVISION and MULTIPLICATION (working from left to right)

ADDITION and SUBTRACTION (working from left to right)

That makes BEDMAS!

Exercise. Work out these operations:
a) $\frac{5}{2} \cdot \frac{1}{2}-\frac{4}{3}$
b) $\frac{1}{5}+\frac{2}{3} \div \frac{5}{7}$
c) $\frac{1}{4} \cdot \frac{2}{3}+\frac{1}{6} \cdot \frac{3}{2}$
d) $\left(\frac{1}{2}+\frac{2}{5}\right) \div\left(1-\frac{1}{10}\right)$

