DEPARTAMENTO DE MATEMÁTICAS.

MATEMÁTICAS II DE 2ºBACHILLERATO.

UNIDAD 8. MÉTRICA EN EL ESPACIO.

ACTIVIDADES

1. Ángulos. Perpendicularidad.

- 1. Hallar el ángulo que forman las rectas $r \equiv \frac{x-1}{3} = \frac{y}{2} = -z$ $s \equiv \{x = 3 t; y = 2 + t; z = 1 t\}$
- 2. En cada uno de los siguientes casos, calcular el ángulo que forman los planos π y π' :

- a) $\pi = x 3y + 4z = 1$ $\pi' = 2x + 2y + z = 3$ b) $\pi = -x + 2y + z = 1$ $\pi' = x + y + 2z = 3$
- 3. En cada uno de los siguientes casos, calcular el ángulo que forman la recta r y el plano π :

- a) $r = \begin{cases} x + y + z = 4 \\ x + z = 2 \end{cases}$ $\pi = x + y = 3$ b) $r = \frac{x 1}{2} = \frac{y}{2} = z + 3$ $\pi = 3x + 4y + 5 = 0$
- 4. Dados la recta $r \equiv \frac{x}{2} = y 2 = z + 3$ y el plano $\pi \equiv x + y = 5$, hallar el punto de corte entre ambos y el ángulo que forman.
- 5. Dado el plano $\pi \equiv mx + 2z 1 = 0$
- a) Discutir según los valores de m, su posición relativa respecto al plano XY.
- b) Hallar los valores de m para que la recta normal al plano π que pasa por el origen, forme un ángulo de 90° con el plano XY.
- 6. Hallar la ecuación general del plano que contiene al punto P(1, -1, 0) y es perpendicular a la dirección $\vec{n} = (1, 2, -1)$.
- 7. Dados los planos $\pi \equiv x + 2y z = 4$ y $\pi' \equiv 2x + 4y + kz = 3$, averiguar el valor de k para que:
- a) π y π' sean paralelos.
- b) π y π' sean perpendiculares.
- 8. Determinar el valor de m para que los planos $\pi = 3x + my z = -3$ y $\pi' = 2x y + mz = 1$ sean perpendiculares.
- 9. En cada uno de los siguientes casos, hallar las ecuaciones cartesianas de la recta r que pasa por el punto P y es perpendicular al plano π :
- a) P(1, 0, 1) $\pi \equiv x + y 1 = 0$

- b) P(2, 1, -1) $\pi \equiv x 2y + 3z = 1$
- c) P(2, -1, -2) π pasa por A(1,1,1) B(0,-2,2) C(-1,0,2)
- d) P(0, 0, 0) $\pi \equiv x + 2y + z = 6$

- 10. a) Hallar las ecuaciones cartesianas de la recta r perpendicular al plano $\pi \equiv x + 2y z = -1$ y que pasa por el punto P(0, 1, 0).
- b) Entre los planos que contienen a la recta r, hallar la ecuación general de uno que también contenga al punto Q(1, 0, 1).
- 11. Dados la recta $r \equiv \frac{x-1}{2} = \frac{y+1}{a} = \frac{z-1}{4}$ y el plano $\pi \equiv x + 3y + bz = 1$, determinar los valores de a y b para que r y π sean perpendiculares.
- 12. Dados la recta $r \equiv \frac{x-1}{m} = \frac{y}{4} = \frac{z-1}{2}$ y el plano $\pi \equiv 2x y + nz = 0$, hallar m y n para que:
- a) La recta $\, {\bf r} \,$ sea perpendicular al plano π
- b) La recta r esté contenida en el plano π
- 13. En cada uno de los siguientes casos, hallar el valor de k para que la recta determinada por los puntos A y B sea paralela al plano π :
- a) A(1, 2, 3) B(3, k, 1) $\pi \equiv x + y + z = -1$
- b) A(1, 0, -1) B(k, 2, 3) $\pi = 2x y + z = 3$
- 14. En cada uno de los siguientes casos, hallar la ecuación general del plano que pasa por el punto P y es perpendicular a la recta r:

a)
$$P(0, 1, 2)$$
 $r = \begin{cases} x + y = 3 \\ z = 0 \end{cases}$ b) $P(2, 1, -1)$ $r = \begin{cases} x - y + z = 3 \\ x + y = 2 \end{cases}$ c) $P(0, 1, 0)$ $r = x + 1 = \frac{y + 2}{2} = z - 1$

- 15. Hallar la ecuación general del plano que pasa por el punto P(1, 1, 1) y es perpendicular a los planos $\pi \equiv x y + z = -3$ y $\pi' \equiv x + 2z = 1$.
- 16. Hallar la ecuación cartesiana del plano perpendicular al segmento de extremos A(1, 2, 1) y B(-1, 0, 3) y que pasa por su punto medio.
- 17. Hallar la ecuación general del plano perpendicular al segmento de extremos A(1, -1, 0) y B(0, 1, 0) y que pasa por el punto A.
- 18. Hallar la ecuación cartesiana del plano que pasa por los puntos A(1,3,-1) y B(4,2,-2) y es perpendicular al plano $\pi \equiv x+y-z+3=0$.
- 19. Hallar la ecuación general del plano que contiene a la recta $r \equiv \frac{x-1}{2} = y = \frac{z-2}{-1}$ y es perpendicular al plano $\pi \equiv 2x y + 2 = 0$.
- 20. Hallar la ecuación general del plano que pasa por el punto A(1, 1, 2), es paralelo a la recta $r \equiv \begin{cases} x-2y+z=0 \\ x=1 \end{cases} \text{ y es perpendicular al plano } \pi \equiv x+y-2z=3 \, .$
- 21. Dados el punto A(3, 1, -1) y la recta $r \equiv x 1 = \frac{y}{2} = \frac{z+1}{3}$, determinar el punto B de r, tal que la recta que pasa por A y B, sea paralela al plano $\pi \equiv 3x 2y + z = 4$.

22. En cada uno de los siguientes casos, hallar las ecuaciones cartesianas de la recta que pasa por el punto P, que se apoya en (corta a) la recta r y es paralela al plano π:

a)
$$P(1, 0, 1)$$
 $r = \begin{cases} x + y - z = 1 \\ 2y - z = 2 \end{cases}$ $\pi = 2x + y - z = 0$ b) $P(1, 2, -1)$ $r = x = y = z$ $\pi = 3x + 2y - z = 4$

23. En cada uno de los siguientes casos, hallar el punto simétrico de P respecto del plano π :

a)
$$P(1, 0, -1)$$
 $\pi = 2x + 2y - z = 6$

b)
$$P(0, 1, 2)$$
 $\pi \equiv x - 3z - 4 = 0$

c)
$$P(2, -1, 3)$$
 $\pi = 3x + 2y + z = 5$

d)
$$P(0, 0, 0)$$
 $\pi = x + 2y + z = 6$

24. En cada uno de los siguientes casos, hallar el punto simétrico de P respecto de la recta r:

a)
$$P(0, 1, 2)$$
 $r \equiv x - 3 = y - 4 = z - 2$

b) P(1, 1, 1)
$$r = \begin{cases} 3x - 2y = 3 \\ y + 3z = -3 \end{cases}$$

c)
$$P(0, 1, -1)$$
 $r = \begin{cases} y - 1 = 0 \\ x + z = 3 \end{cases}$

d) P(1, -1, 0)
$$r = \frac{x-1}{3} = \frac{y+2}{0} = z$$

25. En cada uno de los siguientes casos, determinar la ecuación general del plano respecto del cual los puntos A y B son simétricos:

b)
$$A(1, 3, -1)$$
 $B(3, -1, -1)$

b)
$$A(1, 3, -1)$$
 $B(3, -1, -1)$ c) $A(-1, -2, -1)$ $B(1, 0, 1)$

26. En cada uno de los siguientes casos, hallar las ecuaciones cartesianas de la recta que pasa por el punto P y que corta perpendicularmente a la recta r:

a)
$$P(1, 3, 2)$$
 $r = \frac{x-5}{3} = y-1 = \frac{z-1}{0}$

b)
$$P(3, 2, 1)$$
 $r \equiv x - 1 = -y + 1 = -z$

c)
$$P(2, 1, 3) r = eje OZ$$

d)
$$P(-5, 3, 1)$$
 $r = \frac{x}{2} = \frac{y-3}{2} = \frac{z-2}{-1}$

27. Dados el plano
$$\pi = 2x + y - z + 2 = 0$$
 y la recta $r = \frac{x-5}{-2} = y = \frac{z-6}{m}$

- a) Determinar la posición relativa de ambos según los valores de m.
- b) Para m = -3, hallar la ecuación general del plano que contiene a r y es perpendicular a π .
- c) Para m = -3, hallar la ecuación general del plano que contiene a r y es paralelo a π .
- 28. Dados los puntos A(0, 3, -1) y B(0, 1, m) y el plano $\pi \equiv x y + z = 0$
- a) Averiguar el valor de m para que la recta que pasa por A y B sea paralela al plano π .
- b) Para m = 2, determinar el plano que contiene a los puntos A y B y es perpendicular a π .

29. Dadas la recta $r \equiv x = 2y = -z$ y la recta que pasa por A(1, -1, 1) y B(2, 1, 0), hallar la ecuación en forma continua de la recta perpendicular a ambas y que pasa por P(1, 2, 1).

30. Dados el punto P(1, -1, 0) y las rectas $r \equiv \begin{cases} x - y = 3 \\ x + y - 2z = 0 \end{cases}$ $r' \equiv \begin{cases} x - y + z = 3 \\ y + z = 1 \end{cases}$, determinar la ecuación en forma continua de la recta que pasa por P y es perpendicular a ambas.

- 31. Dadas las rectas $r \equiv x 1 = y 2 = \frac{z 1}{2}$ $s \equiv \frac{x 3}{-2} = \frac{y 3}{-1} = \frac{z + 1}{2}$, hallar la ecuación en forma continua de la recta que pasa por la intersección de r y s y es perpendicular a ambas.
- 32. En cada uno de los siguientes casos, hallar las ecuaciones cartesianas de la recta que corta perpendicularmente a las rectas r y r' (perpendicular común a las rectas r y r'):

a)
$$r = x - 1 = \frac{y - 1}{0} = \frac{z}{-1}$$
 $r' = \begin{cases} x = 0 \\ z + 1 = 0 \end{cases}$

a)
$$r = x - 1 = \frac{y - 1}{0} = \frac{z}{-1}$$
 $r' = \begin{cases} x = 0 \\ z + 1 = 0 \end{cases}$ b) $r = \begin{cases} x - y + 1 = 0 \\ x - y + z = 0 \end{cases}$ $r' = \begin{cases} x - 2y + 9 = 0 \\ x + z + 1 = 0 \end{cases}$

c)
$$r = \frac{x-1}{-1} = y = \frac{z-2}{0}$$
 r'

$$\mathbf{r'} \equiv \begin{cases} \mathbf{x} - \mathbf{y} + 1 = 0 \\ \mathbf{x} - \mathbf{z} + 1 = 0 \end{cases}$$

c)
$$r = \frac{x-1}{-1} = y = \frac{z-2}{0}$$
 $r' = \begin{cases} x-y+1=0 \\ x-z+1=0 \end{cases}$ d) $r = \frac{x}{2} = \frac{y-1}{0} = \frac{z}{0}$ $r' = \begin{cases} x+y=2 \\ z=2 \end{cases}$

33. Dadas las rectas $r \equiv \frac{x-1}{2} = \frac{y+1}{m} = z$ $s \equiv \begin{cases} x + nz = -2 \\ y - z = -3 \end{cases}$, hallar los valores de m y n para que las rectas r y s se corten perpendicularment

2. Distancias.

- 34. Dados el punto P(1, 0, -2) y la recta $r \equiv \begin{cases} 2x y = 5 \\ 2x + y 4z = 7 \end{cases}$
- a) Determinar las ecuaciones cartesianas de la recta perpendicular a r que pasa por P.
- b) Calcular la distancia entre el punto P y su simétrico respecto de la recta r.
- 35. Dados el punto P(1, -3, 7) y la recta $r \equiv \begin{cases} 3x y z = 2 \\ x + y z = -6 \end{cases}$ calcular la distancia entre P y su simétrico respecto de la recta r.
- 36. Hallar la ecuación general del plano que corta a los ejes de coordenadas en puntos situados a dos unidades de distancia del origen.
- 37. En cada uno de los siguientes casos, hallar el punto de la recta r que equidista de A y B:

a)
$$A(2, 1, 2)$$
 $B(0, 4, 1)$ $r = x = y - 2 = \frac{z - 3}{2}$ b) $A(1, 2, 3)$ $B(2, 1, 0)$ $r = \begin{cases} x - y + z = 0 \\ x + y - z = 2 \end{cases}$

b) A(1, 2, 3) B(2, 1, 0)
$$r = \begin{cases} x - y + z = 0 \\ x + y - z = 2 \end{cases}$$

c)
$$A(0, -1, 3)$$
 $B(2, 3, -1)$ $r \equiv x + 2 = \frac{y - 2}{2} = \frac{z - 3}{3}$ d) $A(1, 0, -1)$ $B(2, 1, 1)$ $r \equiv x - 5 = y = \frac{z + 2}{-2}$

d) A(1, 0, -1) B(2, 1, 1)
$$r = x - 5 = y = \frac{z+2}{-2}$$

38. En cada uno de los siguientes casos, hallar la distancia del punto P al plano π :

a)
$$P(1, 0, -1)$$
 $\pi \equiv x - y - z = -1$

b)
$$P(-2, -1, 0)$$
 $\pi = 3x + 2y + 6z = 41$

c)
$$P(2, -1, 3)$$
 $\pi = 3x + 2y + z = 5$

d) P(-1, 2, 6)
$$\pi \equiv x + y - 4z + 5 = 0$$

- 39. Dados la recta $r \equiv x-1=y=\frac{z+2}{-1}$ y el plano $\pi \equiv x+y+z=0$, determinar:
- a) El punto en el que la recta r corta al plano π .
- b) Los puntos de la recta r que distan $\sqrt{3}$ u. del plano π .

- 40. Dados la recta $r = \frac{x-2}{-1} = \frac{y+2}{2} = \frac{z+1}{2}$ y el plano $\pi = -x + 2y + 2z = 1$, determinar los puntos de la recta r que distan 3 u. del plano π .
- 41. En cada uno de los siguientes casos, determinar los puntos de la recta r que equidistan de los planos π_1 y π_2 :

a)
$$\mathbf{r} \equiv \begin{cases} \mathbf{x} = 0 & \pi_1 \equiv \mathbf{x} + \mathbf{z} - 1 = 0 \\ 2(\mathbf{y} - 1) = \mathbf{z} - 3 & \pi_2 \equiv \mathbf{y} - \mathbf{z} - 3 = 0 \end{cases}$$
 b) $\mathbf{r} \equiv \frac{\mathbf{x} + 1}{2} = \mathbf{y} = \frac{\mathbf{z}}{-1} & \pi_1 \equiv 4\mathbf{x} + 3\mathbf{z} + 4 = 0 \\ \pi_2 \equiv 2\mathbf{x} + 2\mathbf{y} + \mathbf{z} = 2 \end{cases}$ c) $\mathbf{r} \equiv \frac{\mathbf{x} - 2}{-1} = \frac{\mathbf{y} - 2}{3} = \mathbf{z} - 1$ $\pi_1 \equiv \mathbf{x} = 0$ $\pi_2 \equiv \mathbf{y} = 0$ d) $\mathbf{r} \equiv \frac{\mathbf{x} - 1}{2} = \frac{\mathbf{y} - 2}{3} = \frac{\mathbf{z}}{2} & \pi_1 \equiv \mathbf{x} + \mathbf{y} + \mathbf{z} = 0 \\ \pi_2 \equiv \mathbf{x} - \mathbf{y} + \mathbf{z} = 0 \end{cases}$

b)
$$r = \frac{x+1}{2} = y = \frac{z}{-1}$$
 $\pi_1 = 4x + 3z + 4 = 0$ $\pi_2 = 2x + 2y + z = 2$

c)
$$r = \frac{x-2}{-1} = \frac{y-2}{3} = z-1$$
 $\pi_1 = x = 0$ $\pi_2 = y = 0$

d)
$$r = \frac{x-1}{2} = \frac{y-2}{3} = \frac{z}{2}$$
 $\pi_1 = x + y + z = 0$ $\pi_2 = x - y + z = 0$

- 42. Dados el punto P(1, 1, 1) y la recta $r = \begin{cases} x y + 1 = 0 \\ y 2z = 3 \end{cases}$, determinar la ecuación general de los planos perpendiculares a la recta r y que disten tres unidades de P.
- 43. Dados el punto P(1, 1, 1) y la recta $r = \begin{cases} y = 1 \\ x + z + 1 = 0 \end{cases}$, determinar la ecuación general de los planos que contienen a la recta r y que distan dos unidades de P.
- 44. En cada uno de los siguientes casos, hallar la distancia entre los planos π y π' :

a)
$$\pi \equiv 2x + y - 2z = 1$$
 $\pi' \equiv 4x + 2y - 4z = -4$ b) $\pi \equiv 3x + 4z = 15$ $\pi' \equiv 3x + 4z = -10$

b)
$$\pi = 3x + 4z = 15$$
 $\pi' = 3x + 4z = -10$

- 45. a) Hallar las ecuaciones cartesianas de la recta r que pasa por el origen de coordenadas y es paralela a los planos $\pi_1 \equiv x + y + z = 3\sqrt{3}$ y $\pi_2 \equiv -x + y + z = 2$.
- b) Hallar la distancia de la recta $\, r \,$ al plano $\, \pi_1 \, . \,$
- 46. Dados la recta $r = \begin{cases} x + y + 2 = 0 \\ -y + z + 5 = 0 \end{cases}$ y el plano $\pi = 2x + y mz = 1$
- a) Averiguar el valor de m para que sean paralelos.
- b) Para m = -1, calcular la distancia entre la recta r y el plano π .
- 47. En cada uno de los siguientes casos, hallar la distancia entre el punto P y la recta r:

a)
$$P(0, 0, 1)$$
 $r = \{x = t; y = 1 + 2t; z = -2 + 2t \}$ b) $P(1, 0, -1)$ $r = \begin{cases} x - z = 2 \\ y = 0 \end{cases}$ c) $P(-2, -1, 0)$ $r = \begin{cases} x + 3y + 1 = 0 \\ 4y - z + 7 = 0 \end{cases}$ d) $P(2, 0, 3)$ $r = \begin{cases} x + z - 1 = 0 \\ x + 2y + z = 3 \end{cases}$

b)
$$P(1, 0, -1)$$
 $r = \begin{cases} x - z = 2 \\ y = 0 \end{cases}$

c)
$$P(-2, -1, 0)$$
 $r \equiv \begin{cases} x + 3y + 1 = 0 \\ 4y - z + 7 = 0 \end{cases}$

d) P(2, 0, 3)
$$r = \begin{cases} x + z - 1 = 0 \\ x + 2y + z = 3 \end{cases}$$

- 48. Dadas las rectas $r = \{ x = 1 + 2\lambda; y = 1 \lambda; z = 1 \}, s = \begin{cases} x + 2y = -1 \\ z = -1 \end{cases}$
- a) ¿Son coplanarias? En caso afirmativo, hallar la ecuación general del plano que las contiene.
- b) Sabiendo que dos de los lados de un cuadrado están en las rectas r y s, respectivamente, calcular su área.

49. En cada uno de los siguientes casos, hallar la distancia entre las rectas r y s

a)
$$r = \frac{x}{4} = y - 2 = \frac{z - 1}{3}$$
 $s = \frac{x + 1}{4} = y - 1 = \frac{z}{3}$

a)
$$r = \frac{x}{4} = y - 2 = \frac{z - 1}{3}$$
 $s = \frac{x + 1}{4} = y - 1 = \frac{z}{3}$ b) $r = \begin{cases} 3x - y = 4 \\ z = 2 \end{cases}$ $s = \begin{cases} x = -5 \\ 2y + 3z = 17 \end{cases}$ c) $r = x - 1 = \frac{y - 1}{0} = \frac{z}{-1}$ $s = \begin{cases} x = 0 \\ z + 1 = 0 \end{cases}$ d) $r = \begin{cases} x - y + 1 = 0 \\ x - y + z = 0 \end{cases}$ $s = \begin{cases} x - 2y + 9 = 0 \\ x + z + 1 = 0 \end{cases}$

c)
$$r = x - 1 = \frac{y - 1}{0} = \frac{z}{-1}$$
 $s = \begin{cases} x = 0 \\ z + 1 = 0 \end{cases}$

d)
$$r = \begin{cases} x - y + 1 = 0 \\ x - y + z = 0 \end{cases}$$
 $s = \begin{cases} x - 2y + 9 = 0 \\ x + z + 1 = 0 \end{cases}$

50. Hallar la ecuación general de los planos paralelos al plano $\pi = 6x - 3y + 2z + 1 = 0$, situados a dos unidades de distancia.

3. Áreas y volúmenes.

51. En cada uno de los siguientes casos, calcular el área del triángulo cuyos vértices son los puntos de corte del plano π con los ejes de coordenadas:

a)
$$\pi = 3x + 2y - 3z = 6$$

b)
$$\pi = 2x + 2y - z = 6$$

b)
$$\pi = 2x + 2y - z = 6$$
 c) $\pi = 2x + 3y + 4z = 12$

52. Hallar la ecuación de un plano que sea paralelo al plano $\pi = x + y + z = 1$ y forme con los ejes de coordenadas un triángulo de área $18\sqrt{3}$ u².

53. Dados la recta
$$r \equiv \begin{cases} 2x + y = 0 \\ z = 0 \end{cases}$$
 y los puntos A(0, 1, 1) y B(2, 1, 3), determinar:

- a) Un punto C de la recta r, para que el triángulo ABC tenga un ángulo recto en el vértice A.
- b) Un punto D de la recta r, para que el triángulo ABD tenga área igual a $\sqrt{2}$ u².

54. Dados la recta
$$\mathbf{r} \equiv \begin{cases} \mathbf{x} + \mathbf{y} + \mathbf{1} = 0 \\ \mathbf{y} - \mathbf{z} = 0 \end{cases}$$
 y los puntos B(1, 2, -3) y C(9, -1, 2), calcular:

- a) Las coordenadas de un punto A de r, de forma que el triángulo ABC sea rectángulo en A.
- b) El área del triángulo ABC.

55. Dados la recta $r = x - 1 = \frac{y+2}{3} = \frac{z-3}{-1}$ y el plano $\pi = x - y + z + 1 = 0$, calcular el área del triángulo ABC, siendo A el punto de intersección de la recta r con el plano π ; B(2, 1, 2) un punto de la recta r y el vértice C la proyección ortogonal del punto B sobre el plano π .

56. Dado el tetraedro de vértices A(0, 0, 0), B(1, 1, 0), C(0, 1, 3) y D(1, 0, 3), calcular la medida de la altura trazada desde el vértice A de dicho tetraedro.

57. a) Dado el plano $\pi \equiv x + 3y + 2z - 5 = 0$, calcular el volumen del tetraedro limitado por π y los planos coordenados.

b) Dado el plano $\pi \equiv x + 2y + z = 6$, calcular el volumen del tetraedro determinado por el origen de coordenadas y los puntos de corte de π con los ejes coordenados.

58. Averiguar un punto de la recta $r \equiv \begin{cases} x - y = 0 \\ y - z = 0 \end{cases}$ que junto con los puntos A(1, 1, 0), B(1, 0, 1) y C(0, 1, 1) formen un tetraedro de volumen 5/6 u³.

SOLUCIONES

1.
$$\alpha = 90^{\circ}$$

2. a)
$$\alpha = 90^{\circ}$$
; b) $\alpha = 60^{\circ}$

3. a)
$$\alpha = 30^{\circ}$$
; b) $\alpha = 69^{\circ}$

4. P(2, 3,
$$-2$$
); $\alpha = 60^{\circ}$

5. a) Si m = 0, son paralelos; si m
$$\neq$$
 0, son secantes; b) m = 0

6.
$$\pi \equiv x + 2y - z = -1$$

7. a)
$$k = -2$$
; b) $k = 10$

$$8. m = 3$$

9. a)
$$\mathbf{r} = \begin{cases} \mathbf{x} - \mathbf{y} = 1 \\ \mathbf{z} = 1 \end{cases}$$
; b) $\mathbf{r} = \begin{cases} 2\mathbf{x} + \mathbf{y} = 5 \\ 3\mathbf{y} + 2\mathbf{z} = 1 \end{cases}$; c) $\mathbf{r} = \begin{cases} \mathbf{x} - 2\mathbf{y} = 4 \\ 5\mathbf{y} - \mathbf{z} = -3 \end{cases}$; d) $\mathbf{r} = \begin{cases} 2\mathbf{x} - \mathbf{y} = 0 \\ \mathbf{y} - 2\mathbf{z} = 0 \end{cases}$

10. a)
$$r = \begin{cases} 2x - y = -1 \\ y + 2z = 1 \end{cases}$$
; b) $\pi' = x - 2y - 3z = -2$

11.
$$a = 6$$
, $b = 2$

12. a)
$$m = -8$$
, $n = -1/2$; b) $m = 4$, $n = -2$

13. a)
$$k = 2$$
; b) $k = 0$

14. a)
$$\pi = x - y + 1 = 0$$
; b) $\pi = -x + y + 2z + 3 = 0$; c) $\pi = x + 2y + z - 2 = 0$

15.
$$\pi'' \equiv 2x + y - z = 2$$

16.
$$\pi \equiv x + y - z = -1$$

17.
$$\pi \equiv x - 2y - 3 = 0$$

18.
$$\pi' \equiv x + y + 2z = 2$$

19.
$$\pi' \equiv x + 2y + 4z = 9$$

20.
$$\pi' \equiv 4x - 2y + z = 4$$

22. a)
$$s = \begin{cases} x + y = 1 \\ y + z = 1 \end{cases}$$
; b) $s = \begin{cases} y = 2 \\ 3x - z = 4 \end{cases}$

23. a)
$$Q(7/3, 4/3, -5/3)$$
; b) $Q(2, 1, -4)$; c) $Q(8/7, -11/7, 19/7)$; d) $Q(2, 4, 2)$

24. a)
$$Q(2, 3, -2)$$
; b) $Q(9/7, -4/7, -22/7)$; c) $Q(4, 1, 3)$; d) $Q(1, -3, 0)$

25. a)
$$\pi = x + z = 3$$
; b) $\pi = x - 2y = 0$; c) $\pi = x + y + z + 1 = 0$

26. a)
$$s = \begin{cases} 3x + y - 6 = 0 \\ x + z - 3 = 0 \end{cases}$$
; b) $s = \begin{cases} x - 2y = -1 \\ y - z = 1 \end{cases}$; c) $s = \begin{cases} x - 2y = 0 \\ z = 3 \end{cases}$; d) $s = \frac{x + 5}{3} = \frac{y - 3}{-2} = \frac{z - 1}{2}$

27. a) Si m = -3, son paralelos; si m \neq -3, son secantes; b) $\pi' \equiv x - 4y - 2z = -7$;

c)
$$\pi'' \equiv 2x + y - z = 4$$

28. a)
$$m = -3$$
; b) $\pi' = x + 3y + 2z - 7 = 0$

29.
$$s \equiv x - 1 = \frac{y - 2}{0} = z - 1$$

30.
$$s = \frac{x-1}{2} = \frac{y+1}{-3} = z$$

31.
$$s = \frac{x-1}{4} = \frac{y-2}{-6} = z-1$$

32. a)
$$s = \begin{cases} y = 1 \\ x - z = 1 \end{cases}$$
; b) $s = \begin{cases} x + y = 3 \\ y + 2z = 4 \end{cases}$; c) $s = \begin{cases} x - y + 1 = 0 \\ 2y + z - 4 = 0 \end{cases}$; d) $s = \begin{cases} x - 1 = 0 \\ y - 1 = 0 \end{cases}$

33.
$$m = 4$$
, $n = 5/2$

34. a)
$$s = \begin{cases} x + y = 1 \\ 2x + 3y + z = 0 \end{cases}$$
; b) $2\sqrt{3}$ u.

35. La distancia es $2\sqrt{3}$ u.

36.
$$\pi = x + y + z = 2$$

38. a)
$$\sqrt{3}$$
 u.; b) 7 u.; c) $\frac{\sqrt{14}}{7}$ u.; d) $3\sqrt{2}$ u.

39. a)
$$P(2, 1, -3)$$
; b) $A(5, 4, -6)$, $B(-1, -2, 0)$

40.
$$A(0, 2, 3), B(2, -2, -1)$$

41. a)
$$P(0, 4, 9)$$
, $Q(0, -4/3, -5/3)$; b) $P(3, 2, -2)$, $Q(0, 1/2, -1/2)$; c) $P(2, 2, 1)$, $Q(4, -4, -1)$; d) $P(-1/3, 0, -4/3)$, $Q(1/2, 5/4, -1/2)$

42.
$$\pi = 2x + 2y + z + 4 = 0$$
, $\pi' = 2x + 2y + z - 14 = 0$

43.
$$\pi = 2x + y + 2z = -1$$
; $\pi' = 2x - y + 2z = -3$

44. a) 1 u.; b) 5 u.

45. a)
$$r = \begin{cases} x = 0 \\ y + z = 0 \end{cases}$$
; b) 3 u.

46. a) m = -1; b)
$$\frac{5\sqrt{6}}{3}$$
 u.

47. a)
$$\frac{\sqrt{74}}{3}$$
 u.; b) 0 u.; c) 5 u.; d) 3 u.

48. a) Son coplanarias porque son paralelas. El plano que las contiene es $\pi = x + 2y - 2z = 1$;

b) El área es A = $36/5 \text{ u}^2$

49. a)
$$\sqrt{\frac{7}{13}}$$
 u.; b) 7 u.; c) $\sqrt{2}$ u.; d) 3 u.

50.
$$\pi' = 6x - 3y + 2z = 13$$
, $\pi'' = 6x - 3y + 2z = -15$

51. a) El área es $\sqrt{22}$ u²; b) El área es 27/2 u²; c) El área es $3\sqrt{29}$ u²

52.
$$\pi' \equiv x + y + z - 6 = 0$$
, $\pi'' \equiv x + y + z + 6 = 0$

53. a) C(1, -2, 0); b) Hay dos soluciones: D(-1, 2, 0) ó D(-1/9, 2/9, 0)

54. a) A(1, -2, -2); b) A =
$$9\sqrt{17}/2$$
 u²

55. El área es
$$\frac{16\sqrt{6}}{9}$$
 u²

56. La medida de la altura es
$$\frac{6}{\sqrt{19}} \cong 1,38$$
 u

57. a) El volumen es 125/36 u³; b) El volumen es 18 u³