Para determinar la función energía potencial (Ep) del sistema formado por una partícula de masa m y la Tierra, calcularemos el trabajo que realiza el campo (la fuerza gravitatoria) al desplazar un cuerpo de masa m por una trayectoria arbitraria desde una posición A, a una distancia rA del cuerpo de masa M responsable del campo, hasta una posición final B que dista rB de M (ver figura).
Debemos tener en cuenta que tanto la dirección como el módulo de la fuerza gravitatoria varían de un punto a otro de la trayectoria. El trabajo total será la suma de todos los trabajos elementales que se realizan en desplazamientos tan pequeños como podamos considerar .Cuando el número de estos sumandos tiende al infinito, el cálculo de esa suma infinita de sumandos nos lleva al concepto de integral y el trabajo que realiza la fuerza (campo) es:
$latex W = \int \limits_{r_A}^{r_B} \vec F \cdot d \vec r $
La fuerza gravitatoria es conservativa y en consecuencia, el trabajo realizado es independiente de la trayectoria seguida; podemos escoger una trayectoria “más cómoda” para calcular el valor de la integral anterior. La trayectoria que elegiremos será A-C-B.
El trabajo que realiza el campo desde A hasta B es:
$latex {W_{A \rightarrow B }} = {W_{A \rightarrow C }}+ {W_{C \rightarrow B }} $
Sabemos que el trabajo realizado desde C a B es cero, ya que la fuerza y el desplazamiento son perpendiculares.
$latex {W_{A \rightarrow B }} = {W_{A \rightarrow C }}=\int \limits_{r_A}^{r_B} -G \frac {M \cdot m}{r^2} \vec u \cdot d \vec r $
En el tramo A-C, el vector unitario $latex \vec u $ y el vector $latex d \vec r $ forman un ángulo de 0º , por lo que su producto escalar es igual al producto de sus módulos, es decir dr:
$latex {W_{A \rightarrow B }} = {W_{A \rightarrow C }}=\int \limits_{r_A}^{r_B} -G \frac {M \cdot m}{r^2} d r $
Resolviendo la integral:
$latex {W_{A \rightarrow B }} = \int \limits_{r_A}^{r_B} -G \frac {M \cdot m}{r^2} d r =\left. G \frac {M \cdot m}r \right |_{r_A}^{r_B}=G \frac {Mm}{r_B}-G \frac {Mm}{r_A} $
Teniendo en cuenta:
$latex W_{A \rightarrow B} = Ep(A)-Ep(B) $ y $latex {W_{A \rightarrow B }} = G \frac {Mm}{r_B}-G \frac {Mm}{r_A} $
podemos decir que:
$latex Ep(A)-Ep(B)= -G \frac {Mm}{r_A}+G \frac {Mm}{r_B} $
Definida la energía potencial de esta forma solo tiene sentido hablar de la diferencia de energía potencial gravitatoria entre dos puntos ya que es imposible conocer el valor de la energía potencial gravitatoria absoluta; parece claro, que debemos elegir un origen de energía potencial gravitatoria. Dado que la acción gravitatoria de M sobre m es nula si el cuerpo de masa m se encuentra infinitamente alejado del cuerpo M, podemos elegir el origen de energía potencial en el infinito (Ep=0), y por tanto :
$latex Ep_{A}-Ep(\infty)= -G \frac {Mm}{r_A} + 0 \implies Ep(A) = – \frac {GMm}{r_A} \ \ (origen \ Ep=0\ \ en \ el \ \infty) $
El localizar el origen de energía potencial gravitatoria en el infinito implica que la energía potencial gravitatoria es siempre negativa, y por ello aumenta su valor a medida que lo hace la distancia entre sus masas.