
Control programado

con ARDUINO

TECNOLOGÍA
IES BELLAVISTA

Control de un sistema técnico

Supongamos que hemos construido un sistema técnico
cuyo funcionamiento queremos controlar...

Por ejemplo, la maqueta de
la barrera de acceso a un
aparcamiento de coches.

IES Bellavista

Control de un sistema técnico: Actuadores

Para poder actuar sobre el sistema hemos de dotarlo de
elementos actuadores

Como pueden ser motores para
producir movimientos, LEDs de
señalización, zumbadores para
emitir sonidos, luces , etc.

Motor

LEDs
Luz

IES Bellavista

Control de un sistema técnico: Sensores

También necesitamos información sobre el estado en que se

encuentra el sistema, por
lo que hay que dotarlo de
elementos sensores

Pueden ser pulsadores para
recibir órdenes de los
usuarios, finales de
carrera para saber
dónde se encuentran
sus elementos móviles,
LDRs para detectar
cambios de iluminación,…..

Pulsador

LDR

Final de
carrera

IES Bellavista

Control de un sistema técnico: cableado

También debe dotársele de un cableado
adecuado que permita enviar órdenes
de funcionamiento a los actuadores y
recibir la información de los sensores.

El cableado debe estar
bien organizado para que
permita distinguir
con facilidad
los terminales de
los componentes a los
que están conectados.

IES Bellavista

Control de un sistema técnico: sistema de control

SISTEMA DE CONTROL

Sin embargo, nada de esto
sirve de nada si no se
dispone de un sistema de
control que determine
cómo funcionará el
sistema técnico controlado.

SISTEMA
CONTROLADO

IES Bellavista

SISTEMA DE CONTROL

SISTEMA
CONTROLADO

IES Bellavista

Control convencional de un sistema técnico

Podríamos controlar el funcionamiento de un actuador como, por ejemplo, el

encendido y apagado de un LED, conectándolo como se indica y haciendo que una
persona actúe sobre el conmutador cuando haya que cambiar el estado del LED.

IES Bellavista

Control convencional de un sistema técnico

Igualmente podríamos controlar varios actuadores aplicándoles manualmente

bien 5 V o bien 0 V según queramos que el actuador funcione o que no lo haga.

Naturalmente, tener a una persona activando y desactivando no es viable.

IES Bellavista

Control convencional de un sistema técnico

Como el control manual no es muy práctico, podríamos recurrir a diseñar un circuito
electrónico convencional que haga lo mismo. No obstante, a poco complejo que sea

el funcionamiento requerido se necesitan amplios conocimientos de electrónica.

IES Bellavista

Control convencional de un sistema técnico

El control electrónico convencional de
un sistema técnico consiste en un
circuito específico a base de
diversos componentes electrónicos,
que viene definido a partir de las
condiciones de funcionamiento que
queremos para el sistema.

SISTEMA DE CONTROL

SISTEMA
CONTROLADO

IES Bellavista

Control convencional de un sistema técnico

Como el circuito es específico, un problema del control convencional es que es
muy rígido , cualquier cambio que queramos en el funcionamiento requiere
cambios en los componentes y en las conexiones del circuito, lo cual no

siempre será posible y debe ser realizado por personal especializado.

Condiciones
de

diseño

SISTEMA TÉCNICO CONTROLADO

SISTEMA DE CONTROL

SENSORES

ACTUADORES

IES Bellavista

Pasando del control convencional al control programado

Si volvemos al esquema del control manual, podríamos

sustituir el bloque de control formado por los conmutadores
accionados manualmente por un circuito electrónico “genérico”

cuyo modo de funcionamiento (programa) estuviera grabado

en una memoria, de modo que pudierámos cambiarlo cuando
quisiéramos sin tener siquiera conocimientos de electrónica.

IES Bellavista

Control programado de un sistema técnico

Un “programa” es un conjunto de instrucciones que pueden ser leídas y ejecutadas
por un microcontrolador. Como resultado de la ejecución de dichas instrucciones se

activan o desactivan actuadores en el momento preciso, se lee la información que

ofrecen los sensores, se hacen cálculos, se toman decisiones, etc.

El dispositivo electrónico que

ejecuta el programa es muy

flexible ya que si queremos
cambiar el modo de

funcionamiento del sistema

controlado tan sólo tenemos
que cambiar el programa

almacenado en la memoria,

pero no el dispositivo. El
dispositivo también cuenta

con “pines” para conectarse

al sistema técnico.

IES Bellavista

Control programado de un sistema técnico

SISTEMA DE CONTROL

SISTEMA
CONTROLADO

El control electrónico programado
implica una enorme flexibilidad ,

ya que cualquier cambio en las

condiciones de funcionamiento no
implica cambios en la circuitería

sino sólo en el programa grabado

en la memoria del dispositivo
electrónico de control.

IES Bellavista

Diseño del control programado: diagramas de flujo

IES Bellavista

Algoritmo

Un algoritmo es un conjunto de
instrucciones ordenadas que
permiten realizar una actividad (por
ejemplo, resolver un problema)
mediante pasos sucesivos que
incluyen: evaluación de condiciones,
toma de decisiones y ejecución de
acciones.

IES Bellavista

Diagrama de flujo

Un diagrama de flujo es una
representación gráfica de un
algoritmo, lo que facilita su
diseño, su comprensión y su
traducción a un lenguaje de
programación.

IES Bellavista

Traducción del algoritmo a diagrama de flujo

IES Bellavista

Diagrama de flujo

En los diagramas de flujo se utiliza una serie de símbolos
normalizados :

IES Bellavista

Diagrama de flujo: Ejemplo 1

Ejemplo: programa que
mantiene encendido un
LED mientras esté
pulsado un pulsador y
apagado cuando dicho
pulsador no está pulsado.

Lógicamente, para que
este algoritmo realice la
función de forma
satisfactoria tiene que
ejecutarse una y otra vez
de forma cíclica (cada

vez que llega al final vuelve a empezar), de lo contrario sólo evaluaría el
estado del pulsador una vez, y encendería o apagaría el LED una vez.

IES Bellavista

Diagrama de flujo: Ejemplo 2

Ejemplo: programa que enciende
un LED al pulsar un pulsador
llamado ON y lo apaga cuando se
pulsa un pulsador llamado OFF.

IES Bellavista

Diagrama de flujo: Ejemplo 3

Sin embargo, en su momento
veremos que este algoritmo tiene

un problema derivado de lo rápido

que ejecuta el programa la placa
Arduino. En el breve tiempo que

dura la pulsación, Arduino ejecuta

multitud de veces el programa, de
modo que nunca sabemos si la

última vez que lo haga encenderá

o apagará la lámpara. Ya veremos
su solución.

Ejemplo: programa que cambia el
estado de un LED de encendido a
apagado o viceversa cada vez que
se pulsa un único pulsador.

IES Bellavista

Diagrama de flujo: Ejemplo 4

Ejemplo: programa que se mantiene
vigilando si se pulsa un pulsador.
Cuando esto ocurre enciende un
LED durante 10 segundos y luego lo
apaga, quedando de nuevo a la
espera de que se pulse el pulsador.

IES Bellavista

Diagrama de flujo: Ejemplo 4-bis

Otra solución:

IES Bellavista

Diagrama de flujo: Ejemplo 5

Ejemplo: programa que vigila dos
pulsadores, P1 y P2. Mientras se
mantiene pulsado P1 hará que se
encienda un LED y si se deja de
pulsar lo apagará. Además, si se
mantiene pulsado P2 hará que
suene un zumbador y si se deja de
pulsar lo callará.

IES Bellavista

Diagrama de flujo: Ejemplo 6

Ejemplo: programa que se mantiene
vigilando si se pulsa un pulsador P1. Cuando
esto ocurre enciende un LED durante 10
segundos y luego lo apaga, quedando de
nuevo a la espera de que se pulse el
pulsador. Sin embargo, si durante esos 10
segundos se pulsa el pulsador P2 el LED se
apagará inmediatamente y el sistema vuelve
a esperar que se pulse P1.

IES Bellavista

Diagrama de flujo: Ejemplo 7

Ejemplo: programa que se mantiene
vigilando si se pulsa un pulsador P1.
Cuando esto ocurre enciende un
LED durante 10 segundos y luego lo
apaga, quedando de nuevo a la
espera de que se pulse el pulsador.
Sin embargo, si durante esos 10
segundos se pulsa el pulsador P2
pitará el zumbador.

IES Bellavista

Diagrama de flujo: Ejemplo 7-bis

Ejemplo: programa
que se mantiene
vigilando si se pulsa
un pulsador P1.
Cuando esto ocurre
enciende un LED
durante 10 segundos
y luego lo apaga,
quedando de nuevo a
la espera de que se
pulse el pulsador. Sin
embargo, si durante
esos 10 segundos se
pulsa el pulsador P2
pitará el zumbador.

Otra solución:

IES Bellavista

Diagrama de flujo: Ejemplo 8

Ejemplo: programa que se mantiene
vigilando si se pulsa un pulsador P1.
Cuando se pulsa P1 tres veces (tras
cada pulsación hay que dejar de pulsar)
se enciende el LED y se queda
encendido. Para apagarlo bastará con
dos pulsaciones seguidas también en P1.

IES Bellavista

Control programado con ARDUINO

Condiciones
de

diseño

LENGUAJE DE
PROGRAMACIÓN

ARDUINO

IES Bellavista

La placa electrónica ARDUINO

Existen varios modelos de placas ARDUINO. Nosotros disponemos de la Arduino

UNO y la Arduino MEGA (que dispone de más pines de conexión con el exterior).

Pines de Entrada / Salida digitales

Botón de
Reset

Conexión a
ordenador

Alimentación
con conector

Microcon-
trolador

LED conectado
al pin 13

LEDs de
transmisión

Pines de Entradas
analógicas

Pines de alimentación
cableada

IES Bellavista

Entradas / Salidas digitales

En los microcontroladores, estas
señales son tensiones , que
pueden tomar dos valores: alto y
bajo, que suelen ser 5 V y 0 V.

� Las salidas digitales de los microcontroladores sólo pueden
aplicar estos dos niveles de tensión a lo que se conecte a ellas.

� Las entradas digitales de un microcontrolador sólo pueden
diferenciar estos dos niveles de tensión o cercanos a ellos.

5 V

0 V

t

Los microcontroladores, y entre ellos el que incorpora Arduino,
trabajan con señales digitales binarias , que son aquellas que sólo
pueden adoptar dos únicos valores.

IES Bellavista

Salidas digitales en un microcontrolador

En los sistemas de control programado, un sistema de control informático

(microcontrolador) ejecuta un programa almacenado en su memoria. El sistema se

encarga de colocar en las salidas un valor de tensión de 0 V ó 5 V según las
instrucciones del programa.

IES Bellavista

Salidas digitales en un microcontrolador

Lógicamente, el sistema de control no dispone únicamente de una salida digital,

sino de muchas, cada una de las cuales controla un actuador de forma

independiente.

IES Bellavista

Salidas digitales en Arduino

Los pines de salida digitales de Arduino

van identificados por un número, que en

la placa Arduino UNO , son de 0 a 13.
Otros pines importantes, de los que hay

varios en la placa, son los pines GND

(abreviatura de “ground”, que es “tierra”
en inglés americano y que es el punto

que se toma como referencia de

tensiones en un circuito, es decir, 0 V).

En la imagen de la figura adjunta,
hemos conectado un LED, con su

correspondiente resistencia en serie,

entre el pin número 7 y GND.

Puede utilizarse un mismo GND para varios

elementos (LEDs, zumbadores, pulsadores, etc.

IES Bellavista

Entradas digitales

Una forma de saber si un pulsador o un interruptor está abierto o cerrado es con el

montaje de la figura y midiendo con un voltímetro la tensión en el punto X. Si el

pulsador está abierto no circula corriente y la tensión será 5 V. Si el pulsador está
cerrado circula corriente y la tensión medida por el voltímetro será 0 V.

IES Bellavista

Entradas digitales en un microcontrolador

En los sistemas de control programado la función del voltímetro la hace el propio

microcontrolador que es capaz de distinguir si en los pines donde se conectan los

sensores (pulsadores, finales de carrera, etc.) hay un nivel alto de tensión
(cercano a 5 V) o un nivel bajo (cercano a 0 V). La resistencia también la incluye.

IES Bellavista

Entradas digitales en Arduino

Los pines de entrada digitales de

Arduino son los mismos que los de

salida. Para usarlos como entrada o
salida se define su modo con una

instrucción llamada pinMode() que

veremos luego.

En la figura hemos conectado un LED

(con su resistencia) entre el pin 7 y

GND y un pulsador NA entre el pin 5 y
GND.

Para que el funcionamiento sea
correcto tendremos que definir el pin

7 como salida y el pin 5 como entrada

en nuestro programa.

IES Bellavista

Uso del entrenador con Arduino

Para hacer nuestras prácticas, podríamos conectar los

componentes (actuadores y sensores) directamente a

los pines de la placa Arduino. No obstante, esto suele
dar lugar a errores en las conexiones y a que se pierda

más tiempo en los montajes de las prácticas.

Vamos a trabajar con un entrenador , que se conectará
con la placa Arduino mediante conectores macho-

macho.

Conector
macho-macho

IES Bellavista

Uso del entrenador con Arduino

Realicemos el montaje de la figura con el entrenador.

Recordar siempre
conectar el conector
GND del entrenador
con un pin GND de
la placa.

IES Bellavista

Uso del entrenador con Arduino

Realicemos el montaje de la figura con el entrenador.

Recordar siempre conectar
el conector GND del
entrenador con un pin GND
de la placa.

IES Bellavista

Control programado con ARDUINO

ARDUINO es una

plataforma de hardware
libre basada en una
placa electrónica con un

microcontrolador y un

entorno de desarrollo

integrado (IDE) para
programarla desde un

ordenador.

IES Bellavista

El entorno integrado de ARDUINO

Pantalla de edición
de programas

Consola inferior

Mensajes

Barra de herramientasVerifica código

Carga en la placa

Nuevo archivo

Abrir archivo

Guardar archivo

Abre monitor
de transmisión

serie

Gestor de
pestañas

Barra de menús

IES Bellavista

Indicación del puerto USB de la placa ARDUINO

Indicación del puerto USB donde se
encuentra conectada la placa ARDUINO

IES Bellavista

Indicación del modelo de la placa ARDUINO utilizada

Indicación del modelo de
placa ARDUINO que
estamos utilizando

IES Bellavista

Cargar un programa de ejemplo para probar la placa: Blink

IES Bellavista

Cargar un programa de ejemplo para probar la placa: Blink

El programa Blink debe
hacer parpadear un LED
que lleva incorporado la
placa conectado al pin 13 a
intervalos de un segundo.

Comprobamos que lo hace.

Una vez abierto el
programa Blink lo subimos
a la memoria de la placa
Arduino haciendo clic
sobre el icono Subir .

IES Bellavista

Programación en ARDUINO: Funciones setup() y loop()

� Comentarios , son notas o
aclaraciones para hacer
comprensible el programa.
Aparecen en color gris.

� Función setup , se ejecuta
una sola vez. Se utiliza
normalmente para definir las
entradas y salidas.

� Función loop , se ejecuta
cíclicamente una y otra vez.
Contiene el cuerpo del
programa.

Todos los programa deben
contener como mínimo las
funciones setup y loop , aunque
éstas estén vacías.

IES Bellavista

Esquema de funcionamiento de Arduino

La función setup() se ejecuta una sola
vez cuando alimentamos la placa o cada
vez que se presiona el botón reset de la
placa. En esta función se suelen incluir las
definiciones del modo en que se usarán
los pines.

A continuación la función loop() se
ejecuta de forma cíclica y permanente .
Una vez termina vuelve a empezar una y
otra vez mientras que siga alimentada
eléctricamente la placa o se presione su
botón reset.

IES Bellavista

Programación en ARDUINO: pinMode()

Ejemplo: programa que enciende

un LED conectado en el pin 7 de
Arduino, lo mantiene encendido 5

segundos y luego lo apaga.

Los pines digitales de Arduino
pueden funcionar tanto como
entradas como salidas. El modo
hay que declararlo previamente
con la instrucción:

pinMode (pin, modo)

Si al parámetro ‘modo’ le damos
el valor OUTPUT definimos el pin
como salida y si le damos el
valor INPUT_PULLUP definimos
el pin como entrada.

IES Bellavista

Programación en ARDUINO: digitalWrite()

Si al parámetro ‘valor’ es HIGH,
ponemos en el pint una tensión
de 5 V y si es LOW ponemos en
el pint una tensión de 0 V.

Se pone un valor de tensión en un
pin definido como salida digital
con la función:

digitalWrite (pin, valor)

El parámetro ‘valor’ puede valer
HIGH o LOW.

Ejemplo: programa que enciende

un LED conectado en el pin 7 de
Arduino, lo mantiene encendido 5

segundos y luego lo apaga.

IES Bellavista

Programación en ARDUINO: delay()

Se puede realizar fácilmente una
temporización con la función
delay():

delay (valor)

Ejemplo: programa que enciende

un LED conectado en el pin 7 de
Arduino, lo mantiene encendido 5

segundos y luego lo apaga.

El parámetro ‘valor’ será un
número que indica el tiempo de
espera medido en milisegundos.

Esta función detiene la ejecución
del programa durante el tiempo
indicado.

IES Bellavista

Programación en ARDUINO: Comentarios

Podemos colocar comentarios en
nuestros programas para explicar
el código, hacer anotaciones, ….
No forman parte del código.

Ejemplo: programa que enciende

un LED conectado en el pin 7 de
Arduino, lo mantiene encendido 5

segundos y luego lo apaga.

� Serán comentarios todas las

líneas incluidas entre /* y */.

� Será comentario todo lo que

siga a // hasta el final de línea.

Los comentarios son escritos en
gris automáticamente.

IES Bellavista

Programación en ARDUINO: Elementos de sintaxis

Los principales elementos de
sintaxis son el punto y coma (;)
y las llaves ({ }).

Toda instrucción debe ir seguida
de un “punto y coma” (;).
Podrían ir varias instrucciones
en un mismo renglón, siempre
que vayan separadas por “;”.

Las llaves ({ }) se usan para
delimitar el inicio y el fin de
diversas construcciones:

� Funciones.

� Bucles de repetición.

� Instrucciones condicionales.

IES Bellavista

Programación en ARDUINO: Constantes

Para poder recordar mejor el
uso que hagamos de los pines
podemos asignarles nombres
relacionados con dicho uso, así
no tenemos que recordar los
números y hay menos errores.

Estos nombres se llaman
constantes , y se definen
utilizando la instrucción:

Observa que esta instrucción no
acaba en punto y coma (;)

Todas las constantes deben
declararse antes de usarse.

#define const número

IES Bellavista

Programación en ARDUINO: la función loop()

Lo normal es que un sistema
esté controlado de forma
permanente. Mientras que la
función setup() se ejecuta sólo
una vez, la función loop() se
ejecuta cíclicamente: cuando
acaba, vuelve a ejecutarse y así
de forma indefinida.

Ejemplo: programa que enciende

un LED conectado en el pin 7 de
Arduino durante 5 segundos,

luego lo apaga 3 segundos y así

sucesivamente por siempre.

Ahora el LED parpadeará de
forma indefinida.

IES Bellavista

Programación en ARDUINO: las variables

Una variable es un espacio
reservado en la memoria de
Arduino con un nombre. En ese
espacio se guarda su valor, que es
un dato que puede variar a lo largo
de la ejecución del programa.

Ejemplo: programa que enciende
un LED mientras esté pulsado un
pulsador y que lo apaga cuando
dicho pulsador no está pulsado.

Toda variable debe ser declarada
(tipo y nombre) antes de ser usada.
Si se hace delante de la función
setup() es una variable global .

tipo nombre_variable;

IES Bellavista

Programación en ARDUINO: Los tipos de datos

Para declarar una variable hay que
indicar el tipo de datos que va a
guardar (de lo cual depende el
tamaño del espacio de memoria
reservado) y el nombre.

� void : sólo para funciones que
no devuelven nada.

� int : valores enteros cortos.

� long : valores enteros largos.

� unsigned long : valores enteros
largos sin signo.

� float : valores decimales.

Los tipos de datos básicos son:

tipo nombre_variable;

Usaremos sobre todo el tipo int

IES Bellavista

Programación en ARDUINO: Los nombres válidos

� Los nombres dados a variables, constantes y funciones propias no deben
coincidir con palabras clave de Arduino (nombres de constantes, tipos,
instrucciones y funciones del propio lenguaje Arduino (HIGH, PI, long, float, if,
while, Serial, delay, max, min,…)

� Hay una serie de constantes con nombres reservados:

� false y true.

� OUTPUT, INPUT e INPUT_PULLUP.

� HIGH y LOW.

� Se distinguen mayúsculas de minúsculas. De este modo, la variable “contador”
y “Contador” serían distintas.

� Los nombres de los programas, de las variables, de las constantes y de las
funciones no pueden contener espacios, ni signos matemáticos, ni tildes , ni
signos de puntuación, ni la letra ñ. Sí puede usarse el guión bajo.

� PI.

IES Bellavista

Esquema de funcionamiento de Arduino

Las declaraciones de variables
globales y de las constantes suelen
colocarse delante de la función setup().

IES Bellavista

captación de datos externos y toma de decisiones

Ejemplo: programa que
enciende un LED mientras
esté pulsado un pulsador y
que lo apaga cuando dicho
pulsador no está pulsado.

Normalmente, en el control de
sistemas técnicos tendremos
que “leer” el estado en que se
encuentran elementos sensores
(pulsadores, finales de carrera,
interruptores, sensores de luz,
de temperatura, de distancia,
etc.) y tomar decisiones sobre lo
que hay que hacer.

IES Bellavista

Programación en ARDUINO: digitalRead()

Ejemplo: programa que enciende
un LED mientras esté pulsado un
pulsador y que lo apaga cuando
dicho pulsador no está pulsado.

Se lee el valor de tensión en un pin
definido como entrada digital con la
función:

digitalRead (pin)

Esta función devuelve un valor
HIGH (si en dicho pin se mide
una tensión de 5 V o cercana) o
un valor LOW (si la tensión
medida en el pin es de 0 V o
cercana.

IES Bellavista

Programación en ARDUINO: Estructura condicional if...else

La estructura if...else decide ejecutar
unas instrucciones u otras en función
de que una condición se evalúe como
verdadera (true) o falsa (false).

if (condición) instrucción_A;

else instrucción_B;

if (condición) {

instrucciones_A;

}

else {

instrucciones_B;

}

Cuando sólo tiene que ejecutarse
una instrucción no son necesarias las
llaves { }.

IES Bellavista

Diagrama de flujo de la estructura condicional if….else

if (condición) {

instrucciones_A;

}

else {

instrucciones_B;

}

IES Bellavista

Programación en ARDUINO: Estructura condicional if...else

A else le pueden seguir otros if,
ejecutándose múltiples pruebas.

if (condición1) {instrucciones_A;}

else if (condición2) {instrucciones_B;}

else if (condición3) {instrucciones_C;}

else {instrucciones_D;}

En cuanto se cumple una de las
condiciones de los “ if ” se ejecutan las
instrucciones correspondientes y ya no
se evalúan el resto de “ if “.

El else final es opcional, es decir,
podemos querer que no se ejecute
nada si no se cumple ninguna de las
condiciones.

IES Bellavista

if (condición1) {instrucciones_A;}

else if (condición2) {instrucciones_B;}

else if (condición3) {instrucciones_C;}

else {instrucciones_D;}

Diagrama de flujo de la estructura condicional if… else if… else

IES Bellavista

Programación en ARDUINO: Estructura condicional if

También puede ocurrir que no haya
bloque else, es decir, en caso de no
cumplirse la condición del if, no se tiene
que ejecutar ninguna instrucción:

if (condición) {

instrucciones;

}

IES Bellavista

Diagrama de flujo de la estructura condicional if

if (condición) {

instrucciones;

}

IES Bellavista

Programación en ARDUINO: operadores condicionales

� booleanos:

&& “ambas condiciones se cumplen”

|| “al menos una condición se cumple”

! “lo contrario a la condición se cumple”

La evaluación de una condición puede
devolver un valor true (si se cumple) o un
valor false (si no se cumple).

Para expresar la condición se usan
diversos operadores :

� de comparación:

== “igual que”

!= “distinto de”

< “menor que”

> “mayor que”

<= “menor o igual que”

>= “mayor o igual que”

IES Bellavista

Programación en ARDUINO: Bucle condicional while

Ejemplo: programa que espera hasta que
se pulsa un pulsador para encender un LED
durante 5 segundos, apagarlo y vuelve a
esperar a que se pulse de nuevo el pulsador
para volver a encenderlo.

La pequeña espera incluida entre dos
consultas consecutivas del estado del
pulsador se realiza porque se ha observado
en la práctica que no hacerlo dar lugar a
errores en la lectura de los pines. Suele ser
una espera muy pequeña, de unos 10
milisegundos.

�Diagrama de flujo de la función loop() .

IES Bellavista

Programación en ARDUINO: Bucle condicional while

� El bucle condicional while repetirá
indefinidamente las instrucciones que
incluye hasta que la condición del
while se evalúe como false.

while (condición) {

bloque de instrucciones;

}

� La condición se evalúa al principio
del bucle, por lo que, si la primera
vez que se evalúa ya es falsa, las
instrucciones contenidas en el bucle
no se ejecutarán ninguna vez.

IES Bellavista

Diagrama de flujo del bucle repetitivo while

while (condición) {

bloque de instrucciones;

}

IES Bellavista

Programación en ARDUINO: Funciones de tiempo

Las funciones de tiempo permiten realizar
temporizaciones en los programas.

� delay (valor)

Pausa el programa durante el número de
milisegundos indicado por “valor”.

� millis ()

Devuelve el número de milisegundos
transcurridos desde que Arduino empezó
a correr el programa actual. El número
crece rápido, por lo que si hay que
guardar el valor en una variable conviene
que sea del tipo unsigned long.

� Advertencia: mientras el programa está
pausado con delay() no se leen las
entradas, por lo que si hay un cambio
en éstas no será captado por Arduino.

Programación en ARDUINO: salida inmediata de los bucles

Ejemplo: programa que espera a que se pulse PUL1 para encender el LED LR. Este LED
se mantendrá encendido durante 10 segundos y después se encenderá el LED LV que se
quedará encendido. Sin embargo, si antes de los 10 segundos se pulsa PUL2, entonces se
apagará LR y se encenderá LV de inmediato sin esperar a los 10 segundos.

IES Bellavista

Programación en ARDUINO: break

Ejemplo: programa que espera a que se
pulse PUL1 para encender el LED LR.
Este LED se mantendrá encendido
durante 10 segundos y después se
encenderá el LED LV que se quedará
encendido. Sin embargo, si antes de los
10 segundos se pulsa PUL2, entonces se
apagará LR y se encenderá LV de
inmediato sin esperar a los 10 segundos.

Gracias al break , al pulsar PUL2 salimos
del bucle while sin tener que esperar a
que se cumpla su condición de que
hayan pasado los 10 segundos.

La instrucción break se utiliza para salir
de forma inmediata de la estructura
condicional en la que se encuentre.

IES Bellavista

Programación en ARDUINO: break

�Salida de un bucle
while con break .

La instrucción break se
utiliza para salir de
forma inmediata de la
estructura en la que se
encuentre.

Habitualmente se utiliza
en las estructuras
repetitivas como el bucle
while y en otras como
switch… case .

Si se ejecuta break , se
ejecutan las instrucciones
A pero no las instrucciones
B.

Instrucciones A

Instrucciones B

IES Bellavista

IES Bellavista

Programación en ARDUINO: El puerto serie

Nos puede interesar que el
programa que se está ejecutando
nos muestre mensajes. Esto es fácil
cuando la placa Arduino está
conectada a nuestro ordenador por
el puerto USB (puerto serie).

Serial.begin (9600)

Ejemplo: programa que enciende
un LED al pulsar PUL_ON y lo
apaga al pulsar PUL_OFF. Pero
además, nos informa con un
mensaje por el monitor del puerto
serie cada vez que lo hace.

1º.- Debemos inicializar el puerto en
nuestra función setup() añadiendo:

IES Bellavista

Programación en ARDUINO: El puerto serie

Serial.print (“mensaje”)

2º.- Para enviar mensajes al puerto
serie, utilizaremos las funciones:

Serial.println (“mensaje”)

La diferencia entre ambas es que la
segunda además de escribir un
mensaje inserta una nueva línea, de
forma que el siguiente mensaje se
escribirá en el renglón siguiente, y no
a continuación.

IES Bellavista

Programación en ARDUINO: El puerto serie

3º.- Para visualizar el
monitor del puerto
serie hacemos clic
sobre el icono de la
lupa.

IES Bellavista

Programación en ARDUINO: El puerto serie

Además de mensajes
también podemos
imprimir en el monitor
del puerto serie el
valor de variables.

Serial.println (nombre_variable)

Ejemplo: programa
que imprime en el
monitor del puerto
serie el tiempo
transcurrido desde el
inicio del programa
expresado en
milisegundos.
Realiza la operación
una vez por segundo.

IES Bellavista

Programación en ARDUINO: Funciones del usuario

Los usuarios podemos diseñar funciones
propias que realicen determinadas tareas
y que sean llamadas por el programa
cuando se requiera.

Estas funciones pueden definirse en
cualquier parte del código, fuera de las
funciones setup() y loop() y de otras
funciones propias.

Ejemplo: programa que hace un
“parpadeo” cada vez que pulsamos un
pulsador. El parpadeo consiste en el
encendido sucesivo de un LED rojo y un
LED verde durante un segundo cada uno.

El parpadeo es realizado por una función
propia definida por nosotros, que es
llamada por la función loop().

IES Bellavista

Entradas analógicas

Para medir una magnitud analógica, como puede ser el nivel de luz que incide

sobre una LDR (resistencia variable con la luz, cuanto más luz le incide menor es

su resistencia) realizamos un montaje llamado “divisor de tensión ” con una
resistencia de valor fijo adecuado.

La tensión medida por el voltímetro en
el punto X del circuito dependerá del

nivel de luz incidente en la LDR.

� Si incide mucha luz, la resistencia
de la LDR será muy pequeña

respecto a la resistencia fija y, por

tanto, la tensión en X será baja.

� Si incide poca luz, la resistencia de

la LDR será muy grande respecto a

la resistencia fija y, por tanto, la
tensión en X será alta.

IES Bellavista

Señales analógicas en sistemas digitales

Como dijimos, la función del voltímetro la hace el microcontrolador, sin embargo,

éstos no pueden trabajar con señales analógicas, por lo que incorporan un

dispositivo llamado “convertidor analógico-digital ”, que transforma los valores
de tensión en un número dentro de un rango. Concretamente, Arduino convierte

valores de tensión de 0 a 5 V en un número comprendido entre 0 y 1023.

IES Bellavista

Señales analógicas en sistemas digitales

Para no tener que conectar resistencias externas para formar el divisor de tensión

con el elemento sensor (LDR en este caso), Arduino incorpora unas resistencias

internas conectadas a 5 V que puede conectar internamente al pin de entrada
analógica si definimos a éste del tipo INPUT_PULLUP con la función pinMode() .

IES Bellavista

Entradas analógicas en Arduino

Las entradas analógicas de Arduino se reconocen porque se nombran con una A

delante del número (A0, A1,.…, A5). En el ejemplo de la figura usamos el pin A0.

Vemos que la LDR está conectada entre el pin A0 y GND, luego tenemos que
definir el pin A0 como INPUT_PULLUP.

Para tomar la lectura el programa usará la orden analogRead (A0)

Esta orden devolverá

un valor comprendido

entre 0 y 1023. En la
figura A (donde la

LDR está iluminada),

el valor devuelto será
bajo, en la figura B

(con la LDR tapada),

el valor será alto.

pinMode (A0, INPUT_PULLUP)

Figura A Figura B

IES Bellavista

Programación en ARDUINO: Entradas analógicas

Ejemplo: programa que lee el nivel
de luz que incide sobre la LDR
conectada al pin A0 continuamente.
Cuando hay luz apaga el LED LB y
cuando no hay lo enciende. El límite
lo marca la variable ValorLimite.

Se lee en una entrada analógica con la

función:

� analogRead (pin)

Devuelve un valor entre 0 y 1023 que
corresponden a tensiones entre 0 V y
5 V respectivamente.

Los pines analógicos también pueden
funcionar como digitales. Los digitales
no pueden funcionar como analógicos.

Programación en ARDUINO: Salidas analógicas

� En realidad Arduino no tiene salidas
analógicas sino que simula un nivel
de tensión analógico entre 0 V y 5 V
con una señal digital cuadrada con
anchura de pulso modulada (PWM).

El parámetro “valor” debe estar
comprendido entre 0 y 255, que
corresponden a tensiones de 0 V a 5 V
respectivamente.

� Se escribe un valor analógico en una
salida digital con la función:

analogWrite (pin, valor)

� En la placa Arduino UNO, los pines
digitales que se pueden usar para
este tipo de salidas son: 3, 5, 6, 9, 10
y 11 (van marcados con signo ~).

IES Bellavista

IES Bellavista

Programación en ARDUINO: Salidas analógicas

Ejemplo: programa que hace que un
LED aumente su luz gradualmente si
se mantiene pulsado PUL1 y que
desciende su luz gradualmente si se
mantiene pulsado PUL2.

� El nombre de una variable seguido
de dos signos positivos (++) lo que
hace es incrementar en 1 dicha
variable.

� El nombre de una variable seguido
de dos signos negativos (– –) lo que
hace es disminuir en 1 dicha variable.

Program. en ARDUINO: Estructura condicional switch...case

� La estructura switch...case compara
el valor de una variable con unas
etiquetas. Cuando una coincide se
ejecuta su bloque de instrucciones.
Opcionalmente puede llevar default .

switch (variable) {

case etiqueta1:

bloque de instrucciones 1;

break;

case etiqueta2:

bloque de instrucciones 2;

break;

default : //es opcional

bloque instrucciones def.;

}

IES Bellavista

Diagrama de flujo de la estructura switch……case

switch (variable) {

case etiqueta_k1:

bloque de instrucciones 1;

break;

case etiqueta_k2:

bloque de instrucciones 2;

break;
.
.
.
.
case etiqueta_kn:

bloque de instrucciones n;

break;

default : //es opcional

bloque instrucciones def.;

}

IES Bellavista

