UDI 2: ELECTRICIDADACTIVIDADES

EQUIVALENCIA DE UNIDADES
1) Pasar 250 kiloohmios a ohmios.
2) Pasar 2,7 megaohmios a ohmios.
3) Pasar 3,3 amperios a mA.
4) Pasar 23.000 mA a amperios.
5) Pasar 43.500 ohmios a kiloohmios.
6) Pasar 560 mV a voltios.7) Pasar 1,23 V a mV.
8) Pasar 45.500 W a kW.
9) Pasar 78,45 kW a W.
6) I usui 70,40 itti u tt.

10) Pasar 7.200.000 julios (w-s) a kW-h.

PROBLEMAS DE LA LEY DE OHM

11) Calcula la intensidad que circula por un motor de 100 ohmios al conectarlo a 230 voltios.

DATOS	FÓRMULAS	CÁLCULO	SOLUCIÓN

12) ¿Cuánto medirá un voltímetro conectado a una lámpara de 50 ohmios si la corriente es de 2,5 amperios?

DATOS	FÓRMULAS	CÁLCULO	SOLUCIÓN

13) ¿Cuánto vale una resistencia conectada a 9 V si es atravesada por una corriente de 0,5 A?

DATOS	FÓRMULAS	CÁLCULO	SOLUCIÓN

14) Calcular la diferencia de potencial que hay en los extremos de un receptor eléctrico de 500 ohmios si circula una corriente de 50 mA.

DATOS	FÓRMULAS	CÁLCULO	SOLUCIÓN

PROBLEMAS DE FÓRMULA DE LA POTENCIA

15) ¿Cuántos kW tiene una estufa si consume 10 A al conectarla a 230 V?

DATOS	FÓRMULAS	CÁLCULO	SOLUCIÓN

16) ¿Qué resistencia tiene un receptor de 2,5 kW si es recorrido por una corriente de 5 A?

DATOS	FÓRMULAS	CÁLCULO	SOLUCIÓN

PROBLEMAS DE FÓRMULA DE LA ENERGÍA

17) ¿Qué energía consume una instalación durante 10 horas si la tensión es de 230 V y la corriente de 20 A?

DATOS	FÓRMULAS	CÁLCULO	SOLUCIÓN

18) ¿Cuanto gastará en un mes una estufa de 2.000 W si funciona durante 8 horas cada día? El kW-h vale 0,20 €.

DATOS	FÓRMULAS	CÁLCULO	SOLUCIÓN

PROBLEMAS DE LA LEY DE JOULE

19) Calcula la cantidad de calor, en calorías, que desprende un radiador eléctrico de 2,5 kW durante 3 horas de funcionamiento.

DATOS	FÓRMULAS	CÁLCULO	SOLUCIÓN

20) ¿Cuántas calorías desprende por efecto Joule en una hora, un cable que es recorrido por una corriente de 10 A y tiene una caída de tensión de 3 V?

DATOS	FÓRMULAS	CÁLCULO	SOLUCIÓN

EJERCICIOS CON EL POLÍMETRO DIGITAL

N°	Valor aproximado	Clavija Roja	Clavija Negra	Selector
1	50 Ω			
2	25.000 Ω			
3	300.000 Ω			
4	1.000 Ω			
5	250 Ω			
6	Pila de 1,5 V			
7	Pila de 9 V			
8	Tensión de enchufe			
9	Intensidad de 50 mA de panel solar			
10	Tensión de 24 V de panel solar			
11	3 pilas en serie de 1,5 V			
12	Intensidad de 10 A de radiador			
13	Intensidad de 1,5 A de lámpara conectada a enchufe			
14	Tensión de batería de 48 V		·	
15	Pila de 4,5 V			

- Las pilas, baterías y paneles solares generan corriente continua.
- En los **enchufes** hay 230 V de corriente alterna.
- Las pilas en serie suman sus tensiones.

N°	Display	Selector	Medida (V - A - Ω)
1	150	200 Ω	
2	.56	2 k	
3	13.6	20 k	
4	178.2	200 k	
5	.003	2 M	
6	2.05	20 M	
7	160.1	200 mV	
8	1.7	2 V	
9	136	200 V	
10	550	1000 V	
11	18	20 mA	
12	190	200 mA	
13	1.6	2 A	
14	7.4	10 A	

- Pasar de voltios (V) a milivoltios (mV) o de amperios (A) a miliamperios (mA): multiplicar por 1000
- Pasar de kilovoltios (kV) a voltios (V) o de kiloohmios (k Ω) a ohmios (Ω): multiplicar por 1000
- Pasar de megaohmios (M Ω) a ohmios (Ω): multiplicar por 1.000.000
- En caso contrario, dividir.