UDI 3 – CONTROLADORA PROGRAMABLE

SISTEMA DE CONTROL PROGRAMADO

CONTROLADORA

ACTUADORES

DIAGRAMA DE BLOQUES SISTEMA CONTROL PROGRAMADO

SISTEMA DE CONTROL PROGRAMADO

Es un sistema que funciona de forma automática según el programa almacenado en la placa controladora *(Micro:bit)*. El programa se transfiere a la placa desde un ordenador con la aplicación web MakeCode, que también simula el funcionamiento del programa.

A los pines de ENTRADA de la placa les conectamos los SENSORES (pulsadores, sensor de temperatura, etc.). A los pines de SALIDA de la placa les conectamos los ACTUADORES (diodos LED, zumbadores, motores, etc.).

Soporte en Internet

PLACA MICRO:BIT v1

COMPONENTES PLACA MICRO:BIT

Procesador (Nordic nRF51822): CPU ARM Cortex-M0 de 16MHz a 32 bits, memoria flash de 256KB, 16KB RAM estática con 2.4GHz en red inalámbrica Bluetooth de bajo consumo de energía, que le permite conectar micro: bit con dispositivos móviles que ejecuten Android e iOS.

Brújula (NXP/Freescale MAG3110): le permite medir la intensidad del campo magnético en cada uno de los tres ejes.

Acelerómetro (NXP/Freescale MMA8652): le permite medir la aceleración y el movimiento a lo largo de tres ejes.

Controlador USB (NXP/Freescale KL26Z): microcontrolador ARM Cortex-M0 + de 48MHz, que incluye un controlador USB 2.0 On-The-Go (OTG) de velocidad completa, que se usa como interfaz de comunicación entre el USB y el microcontrolador principal Nordic.

COMPONENTES PLACA MICRO:BIT

- **Conector micro USB**: le permite conectar la tarjeta micro: bit con una computadora para cargar códigos o alimentarla con 5V.
- Antena inteligente Bluetooth: una antena impresa que transmite señales Bluetooth en la banda de 2.4GHz.
- Botón RESET: le permite restablecer el micro: bit y reiniciar el programa que se está ejecutando actualmente o poner el micro: bit en modo de mantenimiento.
- Conector JST de la batería: le permite alimentar la tarjeta micro: bit con 2 baterías AAA, 2 Pulsadores con software anti-rebote.
- LED del sistema: El LED de color amarillo indica la alimentación USB (sin parpadear) y transferencia de datos (parpadeando). No indica la carga de la batería.
- Conector de borde: incluye 21 pines.
- Matriz de 25 diodos LED rojos con niveles de iluminación. Sensor de temperatura en el microprocesador:
 - Rango: -25°C / 75°C
 - Resolución: 0,25°C
 - Resolución: + 4ºC (sin calibrar)

SENSORES DE LA PLACA

2 BOTONES

SENSOR DE LUZ

SENSOR DE TEMPERATURA DE LA PLACA (en microprocesador)

PLACA MICRO:BIT v2

PLACA MICRO:BIT v2 NOVEDADES

PLACA MICRO:BIT v2 NOVEDADES

- SENSOR TÁCTIL
- MICRÓFONO CON LED
- PULSADOR RESET PARA DESCONEXIÓN
- ALTAVOZ
- MICROPROCESADOR 4 VECES MÁS RÁPIDO
- MEMORIA RAM 8 VECES MAYOR
- MEMORIA PARA PROGRAMAS DOBLE
- 1 PIN MÁS
- CONECTORES DENTADOS
- NUEVO FORMATO DE ARCHIVOS HEX UNIVERSAL

PLACA MICRO:BIT v2 compatibilidad software v1

- El nuevo formato de archivo **hex universal** es válido para las 2 placas.
- Para reutilizar un archivo hex v1 en la nueva placa, hay que abrirlo con el editor y volverlo a guardar.

PROTOBOARD O BREADBOARD

SENSORES EXTERNOS

PULSADOR (No necesita resistencia al conectarlo a pin0 – pin1 - pin2)

ACTUADORES DE LA PLACA

MATRIZ DE 25 DIODOS LED

ACTUADORES EXTERNOS: Diodo LED

Κ

ACTUADORES EXTERNOS: Zumbador < 5 mA

ACTUADORES EXTERNOS: Diodo LED RGB

COMUNICACIONES

RADIO (Comunicación entre placas)

BLUETOOTH BLE (Baja Energía) comunicación con móviles y táblets

DIAGRAMA DE PINES

PINES PARA PINZAS DE COCODRILO

MATRIZ DE DIODOS LED

SEGURIDAD EN EL MANEJO DE LA PLACA

- Manipular la placa con las manos secas y
- solo por los bordes
- No tocar los componentes de la placa

VALORES LÍMITE DE CORRIENTE

Corriente máxima que puede suministrar la placa micro:bit:

- En cada pin: 0,5 mA (como máximo 3 pines a 5 mA)
- En la suma de todos los pines: 90 mA

La **resistencia** en serie con un diodo LED debe ser de **470 ohmios**

Los **zumbadores** de menos de **5mA** se conectan directamente

Para cargas de mayor consumo **(zumbadores** de más de 5 mA, **electroválvulas)** hay que usar un **transistor**

Para motores hay que usar un relé electromagnético o driver

ALIMENTACIÓN

Margen de tensión de alimentación: 1,8 V – 3,6 V

- TIPOS DE ALIMENTACIONES:

- Desde el puerto USB del ordenador
- Con 2 pilas (no recargables) AAA de 1,5 V cada una (Admite alimentación simultánea por USB y pilas)
- Fuente de alimentación CA de 3,3 V
- Escudo para pila botón de 3 V
- Regulador de tensión con una salida de 3,3 V para:
 - Alimentador CA
 - Pila recargable de 3,7 V
 - 4 pilas AA de 1,5 V cada una

ALIMENTACIÓN

ALIMENTACIÓN

ALIMENTACIÓN NO RECOMENDADA

- 2 pilas recargables AAA de 1,2 V
- Pila recargable de 3,7 V

 Conector del borde de la placa (GND – 3V): no tiene protección por inversión de polaridad

 Puntos de soldadura de la trasera de la placa (lateral izquierdo): no tiene protección por inversión de polaridad

- Baterías en el conector USB

ALIMENTACIÓN NO RECOMENDADA

No tiene protección por inversión de polaridad

SOFTWARE DE **PROGRAMACIÓN**

MAKECODE (online)

JAVASCRIPT (MakeCode online)

MICROPYTHON (Recomendado Editor MU)

App micro:bit Socie Play

SCRATCH

DIAGRAMAS DE FLUJO

Es una representación gráfica con símbolos normalizados del ALGORITMO, que son las operaciones que realiza la placa controladora al ejecutar un programa

PROCESO DE TRABAJO

1°) A partir de las Condiciones de funcionamiento, determinar el Diagrama de flujo que le corresponde.

2°) A partir del **Diagrama de flujo**, con **MakeCode**, diseñar el **Programa con los bloques gráficos** y comprobar que la simulación es correcta.

3°) Desde MakeCode, descargar el archivo al ordenador (hex).

4°) Conectar la **placa micro:bit** al ordenador y pegar el archivo del programa en la unidad **MICROBIT.** (*Diodo LED amarillo intermitente*).

5°) Comprobar el funcionamiento de los **Sensores** y **Actuadores internos y externos** conectados a la **placa micro:bit**

MAKECODE

https://makecode.microbit.org/#editor

MAKECODE

- Para encajar un bloque en un hueco debemos llevar llevar al hueco el puntero del ratón y no el bloque
- Zoom del área de programación
- Ocultar el simulador para que el área de programación sea mayor
- Copiar: [Ctrl] + [c]; Pegar: [Ctrl] + [v]
- Deshacer: [Ctrl] + [z]
- Clic derecho sobre un bloque > Duplicar
- Clic derecho sobre un bloque > Añadir comentario
- Borrar bloques: tecla [Supr] o arrastrarlo a zona de menús

SIMULADOR

- La simulación es dinámica y se adapta al programa del área de trabajo
- Si, una vez diseñado el programa, el

simulador se queda en gris, darle al botón

para Reiniciar el simulador С

- El botón A+B

aparece en el

simulador cuando se usa el bloque de

programa A+B

- Botón simulador a pantalla completa

