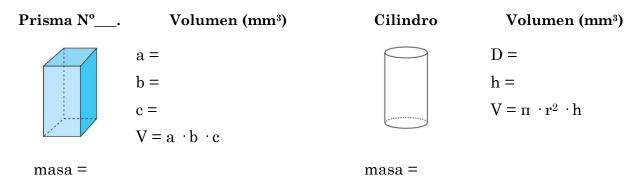


2° ESO PRÁCTICA DE LABORATORIO: MEDIDA DE LA DENSIDAD

INTRODUCCIÓN.


La densidad de un material nos permite determinar el grado de empaquetamiento que tienen las partículas dentro de un volumen determinado. Los materiales de diseño fabricados en la industria del automóvil o aeroespacial deben ser duros y resistentes a la deformación, pero al mismo tiempo su densidad no debe ser alta.

A. MEDIDA DE LA DENSIDAD DE UN SÓLIDO.

Cada alumno debe medir la densidad de dos piezas regulares (un prisma y un cilindro). Para ello debe seguir los siguientes pasos:

1) Dibuja en tu cuaderno las piezas asignadas y apunta los datos que debes medir.

- 2) Mide la masa de cada pieza en la balanza electrónica y anota su valor y unidad de medida.
- 3) Con ayuda de una regla milimétrica mide los distintos lados del prisma, la altura del cilindro y su diámetro. Anota sus valores y unidades en el dibujo realizado en el cuaderno.
- 4) Calcula el volumen de las dos piezas utilizando la fórmula correspondiente. Recuerda que el volumen deberás transformarlo a mL utilizando factores de conversión.
- 5) Una vez obtenido los datos (masa y el volumen) de cada objeto deberás calcular su densidad en g/mL y después transformarla a kg/L utilizando factores de conversión.

B. MEDIDA DE LA DENSIDAD DE UN LÍQUIDO.

Cada grupo debe medir la densidad de un líquido X de características desconocida que el profesor entregará. La medición se realizará con dos instrumentos de medida aportados por el profesor de entre los siguientes: vaso de precipitados de 100 mL, probeta de 100 mL, matraz aforado de 100 mL...)

Cada grupo debe seguir los siguientes pasos:

- 1) Medir la masa del vaso de precipitado en la balanza electrónica (sin líquido).
- 2) En la mesa de trabajo se añade un volumen determinado de líquido al vaso de precipitados y se anota en el cuaderno el volumen añadido. Dirígete de nuevo a la balanza y vuelve a medir la masa del vaso con el líquido. La diferencia se corresponde con la masa de líquido añadido.
- 3) Una vez obtenido los datos de masa y volumen de líquido se calcula su densidad en g/mL.
- 4) Repetir la experiencia con el instrumento volumétrico que el profesor entregue al grupo. Anota la masa del instrumento vacío, del volumen añadido y la masa del instrumento con el líquido. Con los datos recogidos se calcula de nuevo la densidad del líquido desconocido.
- 5) Para dar un valor más correcto de la densidad utiliza como resultado final el valor medio de las densidades obtenidas.

C. PASOS PARA REALIZAR EL INFORME DE PRÁCTICA DE LABORATORIO.

El **Informe de Prácticas** es un documento personal y evaluable, dónde se recoge toda la información de la práctica llevada a cabo. Dicho informe se debe realizar en folio A4, por una sola carilla del mismo, se cumplimentará a mano y se dejarán unos márgenes tanto en los laterales como en el margen superior e inferior.

El informe constará de las siguientes partes:

Primera página: PORTADA, donde se indicará el título de la práctica, el nombre del alumno, curso, grupo de prácticas y fecha.

Segunda página: ÍNDICE DE CONTENIDO, donde se indicará la página donde comienza cada apartado. Se completa una vez tengas terminados todos los apartados.

En el resto de páginas se incluyen los siguientes puntos:

- 1. **Objetivo de la práctica**. Se debe indicar el fin que se busca con la práctica realizada.
- 2. **Fundamento teórico.** Se deben explicar brevemente los conceptos teóricos en los que se basa la práctica realizada. (nota: no se incluye en esta práctica)
- 3. **Procedimiento experimental.** En este apartado explicaremos como vamos a llevar a cabo la práctica. (nota: no se incluye en esta práctica)
- 4. **Materiales e instrumentos.** Aquí indicaremos el nombre de todos los aparatos e instrumentos utilizados, así como de los reactivos en su caso.
- 5. **Datos experimentales.** Indicaremos solo los datos experimentales obtenidos en el laboratorio. Este caso las figuras de las piezas estudiadas y sus medidas.
- 6. **Tratamiento de datos.** En este apartado es donde realizamos todos los cálculos con los datos experimentales obtenidos. Ten cuidado y usa correctamente las unidades de medida.
- 7. **Conclusión.** Aquí expondremos a qué conclusión llegamos. Para ello indicaremos el resultado final de la densidad para los distintos materiales medidos y ordenaremos de menor a mayor su densidad.
- 8. **Bibliografía.** Indicaremos un registro de la información que hemos consultado para realizar la práctica. También podemos poner algún libro o páginas web de consulta que hemos utilizado para realizar el informe.

Mira estos ejemplos para referenciar un libro o una web según el caso:

Libro. Autor 1, Autor 2. Título del libro. AÑO. Editorial. Página/s de consulta.

Pérez, M., Castro, L. Física y Química. 2023. Ed. Anaya. Pág. 22-24.

Web. Recuperado de http://: (se incluye dirección web): Ej.: Recuperado de https://: fyq.es

Otros. Apuntes de clase sobre la densidad (Tema 1).

IMPORTANTE: Sólo los datos experimentales de los alumnos que están en el mismo grupo pueden ser iguales, el resto es personal. El documento que vamos a entregar debe ser firmado en la parte inferior derecha de la portada, dando validez con ello a lo que hemos hecho de forma personal. (Debajo de la firma se coloca "Fdo.:" con el nombre de cada uno). Sería algo así:

Fdo: Juan Español Español