
1.- Dados los sistemas lineales
$$\begin{cases} 2x + y - (3 + 2a)z = 0 \\ x - y + (3 - a)z = 0 \end{cases} y \begin{cases} x + (1 + b)z = 0 \\ (b - 1)x + y + b(b - 1)z = 0 \end{cases}$$

Determínese a y b para que se trate de sistemas equivalentes.

Resolución

Para el primer sistema, las matrices de coeficientes y ampliada son

$$A = \begin{pmatrix} 2 & 1 & -3 - 2a \\ 1 & -1 & 3 - a \end{pmatrix} \ \ \mathbf{y} \quad A^* = \begin{pmatrix} 2 & 1 & -3 - 2a & 0 \\ 1 & -1 & 3 - a & 0 \end{pmatrix}.$$

Como $\begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} = -3 \neq 0$, entonces rg A = 2 = rg A* < nº de incógnitas. Por el teorema de Rouché-Fröbenius el sistema es compatible indeterminado, tiene infinitas soluciones. Hallémoslas:

La matriz del sistema es

$$A^* = \begin{pmatrix} 2 & 1 & -3 - 2a & 0 \\ 1 & -1 & 3 - a & 0 \end{pmatrix} f 1 - 2f 2 \begin{pmatrix} 0 & 3 & -9 & 0 \\ 1 & -1 & 3 - a & 0 \end{pmatrix} f 1 : 3 \begin{pmatrix} 0 & 1 & -3 & 0 \\ 1 & -1 & 3 - a & 0 \end{pmatrix}$$

que corresponde al sistema $\begin{cases} y-3z=0\\ x-y+(3-a)z=0 \end{cases}$. En la $1^{\underline{a}}$ ecuación, y=3z y en la $2^{\underline{a}}$ ecuación,

$$x = y + (a - 3)z = 3z + (a - 3)z = az$$

Llamando z = k, las infinitas soluciones son S_1 : $\begin{cases} x = ak \\ y = 3k \end{cases}$, con k \in R

Para el 2º sistema las matrices de coeficientes y ampliada son

$$B = \begin{pmatrix} 1 & 0 & 1+b \\ b-1 & 1 & b(b-1) \end{pmatrix} \ y \ B^* = \begin{pmatrix} 1 & 0 & 1+b & 0 \\ b-1 & 1 & b(b-1) & 0 \end{pmatrix}.$$

Como $\begin{vmatrix} 1 & 0 \\ b-1 & 1 \end{vmatrix} = 1 \neq 0$, entonces rg B = 2 = rg B* < nº de incógnitas. Por el teorema de Rouché-Fröbenius el sistema es compatible indeterminado, tiene infinitas soluciones. Hallémoslas:

La matriz de este sistema es $B^* = \begin{pmatrix} 1 & 0 & 1+b & 0 \\ b-1 & 1 & b(b-1) & 0 \end{pmatrix}$ que corresponde al sistema

$$\begin{cases} x + (1+b)z = 0\\ (b-1)x + y + b(b-1)z = 0 \end{cases}; x = (-1-b)z$$

Sustituyendo, y = (1 - b)x + b(1 - b)z = (1 - b)(-1 - b)z + b(1 - b)z = (1 - b)(-1)z = (b - 1)z

Llamando z = k, las infinitas soluciones son S_2 : $\begin{cases} x = (-1-b)k \\ y = (b-1)k \\ z = k \end{cases}$, con k \in R

Como los sistemas deben ser equivalentes, entonces $S_1 = S_2$.

Luego, ${a=-1-b \atop 3=b-1}$; de la $2^{\underline{a}}$ ecuación, b=4; sustituyendo en la $1^{\underline{a}}$ ecuación, a=-1-4=-5.

Conclusión: debe ser a = -5, b = 4

2.- Calcúlese la matriz X que verifica XAB – 3A = I, siendo
$$A = \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}$, $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Resolución

Sumando 3A en los dos miembros, XAB = I + 3A. Llamando C = AB queda la ecuación XC = I + 3A.

$$C = AB = \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 5 & 10 \end{pmatrix}$$
; det $C = 35 \neq 0$.

Luego, existe
$$C^{-1} = \frac{1}{\det C} (adj \ C)^t = \frac{1}{35} \begin{pmatrix} 10 & -5 \\ -1 & 4 \end{pmatrix}^t = \frac{1}{35} \begin{pmatrix} 10 & -1 \\ -5 & 4 \end{pmatrix}$$

Multiplicando por C^{-1} , por la derecha, en los dos miembros: $XCC^{-1} = (I + 3A)C^{-1} \Rightarrow X = (I + 3A)C^{-1}$

$$X = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + 3 \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} \end{bmatrix} \frac{1}{35} \begin{pmatrix} 10 & -1 \\ -5 & 4 \end{pmatrix} = \frac{1}{35} \begin{pmatrix} 7 & 3 \\ -3 & 10 \end{pmatrix} \begin{pmatrix} 10 & -1 \\ -5 & 4 \end{pmatrix} = \frac{1}{35} \begin{pmatrix} 55 & 5 \\ -80 & 43 \end{pmatrix} = \begin{pmatrix} \frac{11}{7} & \frac{1}{7} \\ \frac{-16}{7} & \frac{43}{35} \end{pmatrix}$$

OTROS DEL 1991

1.- Discutir según los valores de λ y resolver cuando sea compatible indeterminado el sistema

$$\begin{cases}
-x + \lambda y + z = 1 \\
2x - y - 2z = -1 \\
\lambda x - 3y - z = -3
\end{cases}$$

<u>Resolución</u>

Las matrices de coeficientes y ampliada son $A = \begin{pmatrix} -1 & \lambda & 1 \\ 2 & -1 & -2 \\ \lambda & -3 & -1 \end{pmatrix}$ y $A^* = \begin{pmatrix} -1 & \lambda & 1 & 1 \\ 2 & -1 & -2 & -1 \\ \lambda & -3 & -1 & -3 \end{pmatrix}$

$$\det A = -1 - 2\lambda^2 - 6 + \lambda + 6 + 2\lambda = -2\lambda^2 + 3\lambda - 1 = 0 \iff \lambda = \frac{-3 \pm \sqrt{9 - 4 \cdot (-2) \cdot (-1)}}{2 \cdot (-2)} = \frac{-3 \pm 1}{-4}, \ \lambda = 1, \ \lambda = \frac{1}{2}$$

- Si $\lambda \neq 1$; $\lambda \neq 2$, det $A \neq 0$ y rg A = 3 = rg A^* = n^o de incógnitas. Por el teorema de Rouché-Fröbenius el sistema es compatible determinado, tiene solución única.

- Si
$$\lambda = 1$$
, det A = 0 y A = $\begin{pmatrix} -1 & 1 & 1 \\ 2 & -1 & -2 \\ 1 & -3 & -1 \end{pmatrix}$. Como $\begin{vmatrix} -1 & 1 \\ 2 & -1 \end{vmatrix} = -1 \neq 0$, rg A = 2.

$$A^* = \begin{pmatrix} -1 & 1 & 1 & 1 \\ 2 & -1 & -2 & -1 \\ 1 & -3 & -1 & -3 \end{pmatrix} f2 + 2f1 \begin{pmatrix} -1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & -2 & 0 & -2 \end{pmatrix} f2 = -f3 \begin{pmatrix} -1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}.$$

Como $\begin{vmatrix} -1 & 1 \\ 0 & 1 \end{vmatrix} = -1 \neq 0$, entonces rg A* = 2. Luego, rg A* = rg A = 2 < nº de incógnitas. Por el teorema de Rouché-Fröbenius el sistema es compatible indeterminado, tiene infinitas soluciones.

Hallemos las soluciones: La matriz del sistema es equivalente a $\begin{pmatrix} -1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$ que corresponde al sistema $\begin{cases} -x+y+z=1 \\ y=1 \end{cases}$. Sustituyendo, -x+1+z=1. Despejando, x=z.

Llamando z = k, las infinitas soluciones son
$$\begin{cases} x = k \\ y = 1 \end{cases}$$
, con k \in R

Si $\lambda = \frac{1}{2}$, la matriz del sistema es

$$A^* = \begin{pmatrix} -1 & \frac{1}{2} & 1 & 1 \\ 2 & -1 & -2 & -1 \\ \frac{1}{2} & -3 & -1 & -3 \end{pmatrix} \stackrel{2f1}{=} \begin{pmatrix} -2 & 1 & 2 & 2 \\ 2 & -1 & -2 & -1 \\ 1 & -6 & -2 & -6 \end{pmatrix} \stackrel{f1+f2}{=} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 2 & -1 & -2 & -1 \\ 1 & -6 & -2 & -6 \end{pmatrix}.$$

La $1^{\underline{a}}$ fila corresponde a la ecuación 0 = 1, que es incompatible. Luego, el sistema es incompatible

2.- Hallar los valores de λ para los que la matriz $A = \begin{pmatrix} 1 & 1 & \lambda \\ \lambda & 2 & -1 \\ 3 & 1 & 1 \end{pmatrix}$ tiene inversa.

Calcular su inversa para $\lambda = 1$

Resolución

$$\det A = 2 + \lambda^2 - 3 - 6\lambda + 1 - \lambda = \lambda^2 - 7\lambda = \lambda(\lambda - 7) = 0 \iff \lambda = 0, \ \lambda = 7$$

Luego, para $\lambda \neq 0$ y $\lambda \neq 7$ la matriz A tiene inversa.

Para
$$\lambda = 1$$
, $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & -1 \\ 3 & 1 & 1 \end{pmatrix}$, det $A = 1(1 - 7) = -6 \neq 0$, existe la inversa de A.

$$A^{-1} = \frac{1}{\det A} (adj A)^{t} = \frac{1}{-6} \begin{pmatrix} 3 & -4 & -5 \\ 0 & -2 & 2 \\ -3 & 2 & 1 \end{pmatrix}^{t} = \frac{-1}{6} \begin{pmatrix} 3 & 0 & -3 \\ -4 & -2 & 2 \\ -5 & 2 & 1 \end{pmatrix} = \begin{pmatrix} \frac{-1}{2} & 0 & \frac{1}{2} \\ \frac{2}{3} & \frac{1}{3} & \frac{-1}{3} \\ \frac{5}{6} & \frac{-1}{3} & \frac{-1}{6} \end{pmatrix}$$

3.-¿Para qué valores de λ es compatible el sistema $\begin{cases} \lambda x + y = 1 \\ 2x + y = 0 \end{cases}$? $\lambda^2 x + \lambda y = 3$

Es un sistema de 3 ecuaciones y 2 incógnitas.

Las matrices de coeficientes y ampliada son $A = \begin{pmatrix} \lambda & 1 \\ 2 & 1 \\ \lambda^2 & \lambda \end{pmatrix}$ y $A^* = \begin{pmatrix} \lambda & 1 & 1 \\ 2 & 1 & 0 \\ \lambda^2 & \lambda & 3 \end{pmatrix}$

$$\det A^* = 3\lambda + 2\lambda - \lambda^2 - 6 = -\lambda^2 + 5\lambda - 6 = 0 \iff \lambda = \frac{-5 \pm \sqrt{25 - 4 \cdot (-1) \cdot (-6)}}{2 \cdot (-1)} = \frac{-5 \pm 1}{-2}, \ \lambda = 2, \ \lambda = 3$$

- Si $\lambda \neq 2$ y $\lambda \neq 3$, det $A^* \neq 0$ y rg $A^* = 3 \neq$ rg A, que es como mucho 2. Luego, por el teorema de Rouché-Fröbenius el sistema es incompatible, no tiene solución.

Si $\lambda=2$, la matriz del sistema es $A^*=\begin{pmatrix}2&1&1\\2&1&0\\4&2&3\end{pmatrix}\begin{pmatrix}f2-f1\\0&0&-1\\0&0&1\end{pmatrix}$. La $3^{\underline{a}}$ fila corresponde a la ecuación 0=1, que es incompatible. Luego, el sistema también es incompatible

Si
$$\lambda = 3$$
, la matriz del sistema es $A^* = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 1 & 0 \\ 9 & 3 & 3 \end{pmatrix} f_3 = 3f_1 \begin{pmatrix} 3 & 1 & 1 \\ 2 & 1 & 0 \end{pmatrix}$.

Como
$$\begin{vmatrix} 3 & 1 \\ 2 & 1 \end{vmatrix} = 1 \neq 0$$
, rg A* = 2 = rg A

Luego, rg $A^* = rg A = 2 = n^{\varrho}$ de incógnitas. Por el teorema de Rouché-Fröbenius el sistema es compatible determinado, tiene solución única.