1.- Dado el sistema
$$\begin{cases} x + y + 3z = -1 \\ 2x + 5y + 4z = -2 \\ x + 3y + m^2z = m \end{cases}$$

Estudiar la compatibilidad para los distintos valores reales de m. Resolverlo para m = -1

Resolución

Las matrices de coeficientes y ampliada son $A = \begin{pmatrix} 1 & 1 & 3 \\ 2 & 5 & 4 \\ 1 & 2 & m^2 \end{pmatrix}$ y $A^* = \begin{pmatrix} 1 & 1 & 3 & -1 \\ 2 & 5 & 4 & -2 \\ 1 & 2 & m^2 & m \end{pmatrix}$

$$\det A = 5m^2 + 4 + 18 - 15 - 12 - 2m^2 = 3m^2 - 5 = 0 \iff m = \pm \sqrt{\frac{5}{3}}$$

- Si $m \neq \pm \sqrt{\frac{5}{3}}$, rg A = 3 = rg A* = nº de incógnitas. Luego, por el teorema de Rouché-Fröbenius el sistema es compatible determinado, tiene solución única.

$$-\operatorname{Si} m = \sqrt{\frac{5}{3}}, A^* = \begin{pmatrix} 1 & 1 & 3 & -1 \\ 2 & 5 & 4 & -2 \\ 1 & 3 & \frac{5}{3} & \sqrt{\frac{5}{3}} \end{pmatrix} f_{3} - f_{1} \begin{pmatrix} 1 & 1 & 3 & -1 \\ 0 & 3 & -2 & 0 \\ 0 & 2 & \frac{-4}{3} & \sqrt{\frac{5}{3}} + 1 \end{pmatrix} 3f_{3} - 2f_{2} \begin{pmatrix} 1 & 1 & 3 & -1 \\ 0 & 3 & -2 & 0 \\ 0 & 0 & 0 & 3\sqrt{\frac{5}{3}} + 3 \end{pmatrix}$$

La $3^{\underline{a}}$ fila corresponde a la ecuación $0 = 3\sqrt{\frac{5}{3}} + 3$, que es incompatible. Luego, el sistema es incompatible

- Si
$$m = -\sqrt{\frac{5}{3}}$$
, det $A = 0$ y $A = \begin{pmatrix} 1 & 1 & 3 \\ 2 & 5 & 4 \\ 1 & 3 & \frac{5}{3} \end{pmatrix}$. Como $\begin{vmatrix} 1 & 1 \\ 2 & 5 \end{vmatrix} = 3 \neq 0$, rg $A = 2$.

La $3^{\underline{a}}$ fila corresponde a la ecuación $0 = -3\sqrt{\frac{5}{3}} + 3$, que es incompatible. Luego, el sistema también es incompatible

Para m = -1 sabemos que el sistema es compatible determinado y la matriz del sistema es

$$A^* = \begin{pmatrix} 1 & 1 & 3 & -1 \\ 2 & 5 & 4 & -2 \\ 1 & 3 & 1 & -1 \end{pmatrix} \begin{pmatrix} f2 - 2f1 \\ f3 - f1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 3 & -1 \\ 0 & 3 & -2 & 0 \\ 0 & 2 & -2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 3 & -1 \\ 0 & 3 & -2f2 \\ 3f3 - 2f2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 3 & -1 \\ 0 & 3 & -2 & 0 \\ 0 & 0 & -2 & 0 \end{pmatrix} \text{ que corresponde all }$$

sistema
$$\begin{cases} x + y + 3z = -1 \\ 3y - 2z = 0 \end{cases} ; z = 0 ; 3y - 2.0 = 0, y = 0 ; x = -1 - y - 3z = -1 - 0 - 3.0 = -1. \\ -2z = 0 \end{cases}$$

Resolviendo, la solución es x = -1, y = z = 0

- 2.- Decir cuáles de las afirmaciones siguientes es falsa y comprobar su falsedad con un ejemplo:
- a) El determinante de una matriz producto de otras dos es el producto de los determinantes.

Resolución

Cierto, es una propiedad de los determinantes.

b) La traspuesta del producto de dos matrices es el producto de las traspuestas.

Resolución

Sabemos que se cumple que $(AB)^t = B^tA^t$, que no siempre es igual a A^tB^t .

Por ejemplo, si $A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ y $B = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$

$$(AB)^t = \begin{bmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \end{bmatrix}^t = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}^t = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \neq A^t B^t = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

c) El determinante de cualquier matriz $A=(a_{ij})$ de orden superior a dos, tal que $a_{ij}=j$ – i, es nulo.

Falso. Si, por ejemplo, A es de orden 2 x 2, $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, det A = 1.

Luego, no siempre es nulo el determinante de A.

d) El producto de dos matrices no nulas es una matriz no nula.

Falso. Por ejemplo, si
$$A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
 y $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, entonces $AB = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

Como vemos, el resultado es la matriz nula

4.- Discutir según los valores del parámetro a y resolver, en los casos que sea posible, el sistema

$$\begin{cases} 3x + 2y + az = 1\\ 5x + 3y + 3z = 2\\ ax + y - z = 1 \end{cases}$$
Resolución

Las matrices de coeficientes y ampliada son $A = \begin{pmatrix} 3 & 2 & a \\ 5 & 3 & 3 \\ a & 1 & -1 \end{pmatrix}$ y $A^* = \begin{pmatrix} 3 & 2 & a & 1 \\ 5 & 3 & 3 & 2 \\ a & 1 & -1 & 1 \end{pmatrix}$

 $\det A = -9 + 6a + 5a - 3a^2 - 9 + 10 = -3a^2 + 11a - 8 = 0$. Factoricemos usando la regla de Ruffini:

- Si a $\neq 1$ y $a \neq \frac{8}{3}$, rg A = 3 = rg A* = n° de incógnitas. Luego, por el teorema de Rouché-Fröbenius el sistema es compatible determinado, tiene solución única.

Vamos a usar la regla de Cramer para resolverlo:

$$A_{x} = \begin{pmatrix} 1 & 2 & a \\ 2 & 3 & 3 \\ 1 & 1 & -1 \end{pmatrix} \quad A_{y} = \begin{pmatrix} 3 & 1 & a \\ 5 & 2 & 3 \\ a & 1 & -1 \end{pmatrix} \quad A_{z} = \begin{pmatrix} 3 & 2 & 1 \\ 5 & 3 & 2 \\ a & 1 & 1 \end{pmatrix}; \det A_{x} = -3 + 6 + 2a - 3a - 3 + 4 = 4 - a$$

$$x = \frac{\det A_x}{\det A} = \frac{4 - a}{-3a^2 + 11a - 8} \quad ; \quad y = \frac{\det A_y}{\det A} = \frac{-2a^2 + 8a - 10}{-3a^2 + 11a - 8} \quad ; \quad z = \frac{\det A_z}{\det A} = \frac{a - 2}{-3a^2 + 11a - 8}$$

$$\begin{pmatrix} 3 & 2 & 1 & 1 \\ 5 & 3 & 3 & 2 \\ 1 & 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} f1 - 3f3 \\ f2 - 5f3 \\ 1 & 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 & 4 & -2 \\ 0 & -2 & 8 & -3 \\ 1 & 1 & -1 & 1 \end{pmatrix} f2 - 2f1 \begin{pmatrix} 0 & -1 & 4 & -2 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & -1 & 1 \end{pmatrix}$$

La $2^{\underline{a}}$ fila corresponde a la ecuación 0 = 1, que es incompatible. Luego, el sistema es incompatible

- Si $a = \frac{8}{3}$ la matriz del sistema es

$$\begin{pmatrix} 3 & 2 & \frac{8}{3} & 1 \\ 5 & 3 & 3 & 2 \\ \frac{8}{3} & 1 & -1 & 1 \end{pmatrix} \begin{matrix} 3f1 \\ 5 & 3 & 3 & 2 \\ 8 & 3 & -3 & 3 \end{matrix} \begin{matrix} 9 & 6 & 8 & 3 \\ 5 & 3 & 3 & 2 \\ 8 & 3 & -3 & 3 \end{matrix} \begin{matrix} 5f1 - 9f2 \\ 8f1 - 9f3 \end{matrix} \begin{pmatrix} 9 & 6 & 8 & 3 \\ 0 & 3 & 13 & -3 \\ 0 & 21 & 91 & -3 \end{pmatrix} \begin{matrix} 6f3 - 7f2 \end{matrix} \begin{pmatrix} 9 & 6 & 8 & 3 \\ 0 & 3 & 13 & -3 \\ 0 & 0 & 0 & 18 \end{pmatrix} \begin{matrix} 6f3 - 7f2 \end{matrix}$$

La $3^{\underline{a}}$ fila corresponde a la ecuación 0 = 18, que es incompatible. Luego, el sistema es incompatible

5.- Sea A una matriz cuadrada de orden n y λ un número real. ¿Es cierta la relación det (λ A) = λ ⁿ det A? Justificar la respuesta.

Resolución

En la matriz λA podemos sacar factor común λ de las n filas y nos quedaría det $(\lambda A) = \lambda^n$ det A

6.- Dada la matriz $\begin{pmatrix} a & d & a+pd \\ b & e & b+pe \\ c & f & c+pf \end{pmatrix}$ enunciar las propiedades de los determinantes que permiten

comprobar "sin desarrollo" que el determinante de esta matriz es nulo.

$$\begin{vmatrix} a & d & a+pd \\ b & e & b+pe \\ c & f & c+nf \end{vmatrix} \xrightarrow{(1)} \begin{vmatrix} a & d & a \\ b & e & b \\ c & f & c \end{vmatrix} + \begin{vmatrix} a & d & pd \\ b & e & pe \\ c & f & c \end{vmatrix} \xrightarrow{(2)} 0 + 0 = 0$$

- (1) descomponemos en suma de dos determinantes usando la 3^a columna
- (3) el primer determinante es nulo por ser iguales la 1^a y 3^a columna y el 2^o determinante también es nulo por ser proporcionales la 2^ª y 3^ª columnas.

7.- Dar un ejemplo de sistema de tres ecuaciones con tres incógnitas que sea incompatible, y otro que sea compatible indeterminado.

- El sistema
$$\begin{cases} x + y + z = 0 \\ x + y + z = 1 \text{ es incompatible} \\ x + y + z = 2 \end{cases}$$

Las matrices de coeficientes y ampliada son
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
; rg $A = 1$ $A^* = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \end{pmatrix}$

Observa que todos los menores de orden 3 de A* son nulos, por tener 2 columnas iguales, y como $\begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} = 1 \neq 0$, entonces rg A* = 2.

Luego, rg $A = 1 \neq rg A^* = 2$. Por el teorema de Rouché-Fröbenius el sistema es incompatible

- El sistema
$$\begin{cases} x+y+z=0\\ x-y+z=1 \text{ es compatible indeterminado}\\ 2x+2z=1 \end{cases}$$

Las matrices de coeficientes y ampliada son $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 2 & 0 & 2 \end{pmatrix}$ y $A^* = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 1 & 1 \\ 2 & 0 & 2 & 1 \end{pmatrix}$ det A = -2 + 2 + 2 - 2 = 0 y como $\begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -2 \neq 0$, rg A = 2.

$$A^* = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 1 & 1 \\ 2 & 0 & 2 & 1 \end{pmatrix} \begin{matrix} f2 - f1 \\ f3 - 2f1 \end{matrix} \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & -2 & 0 & 1 \\ 0 & -2 & 0 & 1 \end{pmatrix} \begin{matrix} f3 = f2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & -2 & 0 & 1 \end{pmatrix}.$$

Como $\begin{vmatrix} 1 & 1 \\ 0 & -2 \end{vmatrix} = -2 \neq 0$, rg A* = 2. Luego, rg A* = rg A = 2 < nº de incógnitas. Por el teorema de Rouché-Fröbenius el sistema es compatible indeterminado, tiene infinitas soluciones.

8.- Calcular el determinante de la matriz
$$\begin{pmatrix} a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d \\ a & b & c & d \end{pmatrix}$$

$$\begin{vmatrix} a & a & a & a & a \\ a & b & b & b & b \\ a & b & c & c & c \\ a & b & c & d & d \\ a & b & c & d & e \end{vmatrix} \begin{vmatrix} f2 - f1 \\ f3 - f2 \\ f4 - f3 \\ 6 & 0 & 0 & 0 \end{vmatrix} \begin{vmatrix} a & a & a & a & a \\ 0 & b - a & b - a & b - a \\ 0 & 0 & c - b & c - b & c - b \\ 0 & 0 & 0 & d - c & d - c \\ 0 & 0 & 0 & e - d \end{vmatrix} \xrightarrow{(1)} a \begin{vmatrix} b - a & b - a & b - a & b - a \\ 0 & c - b & c - b & c - b \\ 0 & 0 & d - c & d - c \\ 0 & 0 & e - d \end{vmatrix}$$

$$\stackrel{(2)}{\Longrightarrow} a(b-a) \begin{vmatrix} c-b & c-b & c-b \\ 0 & d-c & d-c \\ 0 & 0 & e-d \end{vmatrix} \stackrel{(3)}{\Longrightarrow} a(b-a)(c-b) \begin{vmatrix} d-c & d-c \\ 0 & e-d \end{vmatrix} \stackrel{(4)}{\Longrightarrow} a(b-a)(c-b)(d-c)(e-d)$$

(1)(2) y (3) Desarrollo usando la 1^a columna

(4) calculo el determinante de orden 2

9.- ¿Son equivalentes los sistemas de ecuaciones siguientes? $\begin{cases} x - 2y + z = 1 \\ 2x + y - z = 2 \end{cases}$ y $\begin{cases} x + 3y - 2z = 1 \\ x - 7y + 4z = 1 \\ 3x - y = 3 \end{cases}$

Resolución

- La matriz del primer sistema es

$$\begin{pmatrix}1&-2&1&1\\2&1&-1&2\end{pmatrix}_{f2+f1}\begin{pmatrix}1&-2&1&1\\3&-1&0&3\end{pmatrix} \text{que corresponde al sistema} \begin{cases}x-2y+z=1\\3x-y=3\end{cases}.$$

En la $2^{\underline{a}}$ ecuación, y = 3x - 3; en la $1^{\underline{a}}$ ecuación, z = 1 - x + 2y = 1 - x + 2(3x - 3) = 5x - 5

Llamando x = k, las infinitas soluciones son $\begin{cases} x = k \\ y = 3k - 3 \end{cases}$, con k \in R

- La matriz del segundo sistema es

$$\begin{pmatrix} 1 & 3 & -2 & 1 \\ 1 & -7 & 4 & 1 \\ 3 & -1 & 0 & 3 \end{pmatrix} \begin{matrix} f2 - f1 \\ f3 - 3f1 \end{pmatrix} \begin{pmatrix} 1 & 3 & -2 & 1 \\ 0 & -10 & 6 & 0 \\ 0 & -10 & 6 & 0 \end{pmatrix} \begin{matrix} f2:2 \\ f3 = f2 \end{pmatrix} \begin{pmatrix} 1 & 3 & -2 & 1 \\ 0 & -5 & 3 & 0 \end{pmatrix}$$

que corresponde al sistema $\begin{cases} x+3y-2z=1\\ -5y+3z=0 \end{cases}$. Llamando $\mathbf{x}=\mathbf{k}$, $\begin{cases} 3y-2z=1-k\\ -5y+3z=0 \end{cases}$ cuya matriz asociada es

$$\begin{pmatrix}3&-2&1-k\\-5&3&0\end{pmatrix} \frac{1-k}{5f1+3f2} \begin{pmatrix}3&-2&1-k\\0&-1&5-5k\end{pmatrix} \text{que corresponde al sistema} \begin{cases}3y-2z=1-k\\-z=5-5k\end{cases}$$

En la
$$2^{\underline{a}}$$
 ecuación, $z = 5k - 5$; en la $1^{\underline{a}}$ ecuación, $y = \frac{2z + 1 - k}{3} = \frac{2(5k - 5) + 1 - k}{3} = \frac{9k - 9}{3} = 3k - 3$

Las infinitas soluciones son $\begin{cases} x = k \\ y = 3k - 3 \text{, con } k \in \mathbb{R} \\ z - 5k = 5 \end{cases}$

Podemos observar que los dos sistemas tienen las mismas soluciones. Luego, son equivalentes.