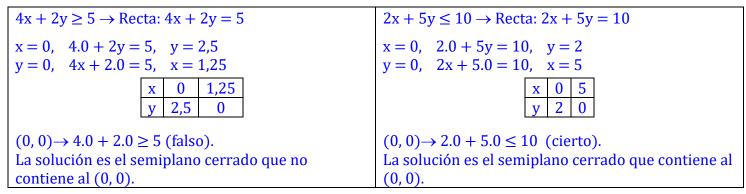
PAU – MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II – PROGRAMACIÓN LINEAL – ANDALUCÍA MODELOS DE 2015 RESUELTOS Profesor: Rafael Núñez Nogales

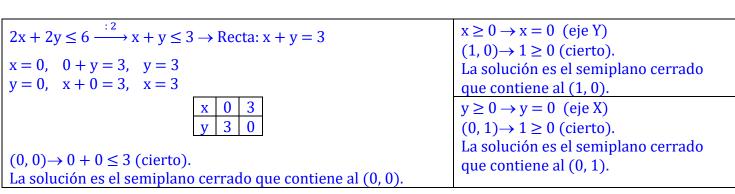
1.-

a) Represente gráficamente la región factible definida por las siguientes restricciones:

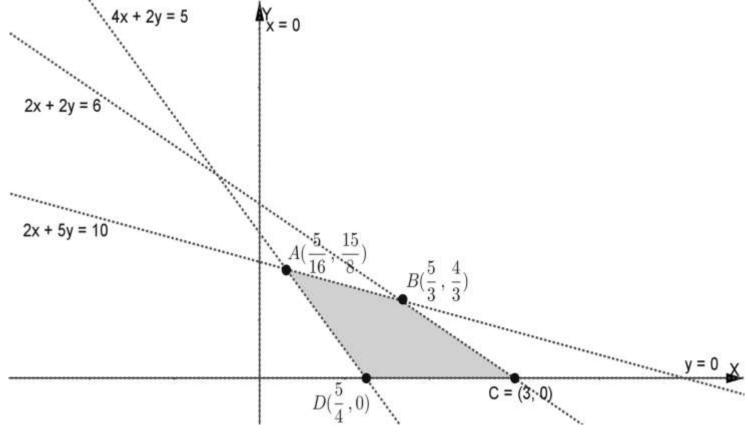
$$4x + 2y \ge 5$$
 $2x + 5y \le 10$ $2x + 2y \le 6$ $x \ge 0$ $y \ge 0$ y calcule sus vértices. Resolución

Resolvemos el sistema de inecuaciones:





Dibujamos los ejes de coordenadas y hacemos la escala adecuada teniendo en cuenta que en el eje X los valores que hay que representar son 0; 1,25; 3 y 5 y en el eje Y los valores son 0; 2; 2,5 y 3



<u>PAU – MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II – PROGRAMACIÓN LINEAL – ANDALUCÍA</u> MODELOS DE 2015 RESUELTOS Profesor: Rafael Núñez Nogales

Obtención de los vértices:

$$\begin{cases} 4x + 2y = 5 \\ 2x + 5y = 10 \xrightarrow{\cdot 2} \end{cases} \begin{cases} 4x + 2y = 5 \\ 4x + 10y = 20 \end{cases}; \text{ restando, } 8y = 15, y = \frac{15}{8} \end{cases}$$

$$4x + 2\frac{15}{8} = 5, 4x + \frac{15}{4} = 5 \xrightarrow{\cdot 4}, 16x + 15 = 20, x = \frac{5}{16} \rightarrow A\left(\frac{5}{16}, \frac{15}{8}\right)$$

$$\begin{cases} x + y = 3 \xrightarrow{\cdot 2} \\ 2x + 5y = 10 \end{cases} \begin{cases} 2x + 2y = 6 \\ 2x + 5y = 10 \end{cases}; \text{ restando, } 3y = 4, y = \frac{4}{3} ; x + \frac{4}{3} = 3, x = 3 - \frac{4}{3} = \frac{5}{3} \rightarrow B\left(\frac{5}{3}, \frac{4}{3}\right)$$

$$\begin{cases} x + y = 3 \\ y = 0 \end{cases} \rightarrow x + 0 = 3, x = 3 \rightarrow C(3, 0)$$

$$\begin{cases} 4x + 2y = 5 \\ y = 0 \end{cases} \rightarrow 4x + 2.0 = 5, x = \frac{5}{4} \rightarrow D\left(\frac{5}{4}, 0\right)$$

b) Calcule los valores máximo y mínimo de la función objetivo F(x, y) = x + 2y en la región anterior y los puntos donde se alcanzan.

Resolución

Los puntos en los que alcanza los valores extremos la función F deben estar en los vértices del recinto:

$$F(A) = F\left(\frac{5}{16}, \frac{15}{8}\right) = \frac{5}{16} + 2\frac{15}{8} = \frac{65}{16} = 4,0625$$

$$F(B) = F\left(\frac{5}{3}, \frac{4}{3}\right) = \frac{5}{3} + 2\frac{4}{3} = \frac{13}{3} \approx 4,3333$$

$$F(C) = F(3,0) = 3 + 2.0 = 3$$

$$F(D) = F\left(\frac{5}{4}, 0\right) = \frac{5}{4} + 2.0 = \frac{5}{4} = 1,25$$

Valor máximo es $\frac{13}{3} \cong 4{,}3333$ y se alcanza en $B\left(\frac{5}{3}, \frac{4}{3}\right)$ y el mínimo es $\frac{5}{4} = 1{,}25$ y se alcanza en $D\left(\frac{5}{4}, 0\right)$

2.- Un supermercado tiene almacenados 600 kg de manzanas y 400 kg de naranjas. Para incentivar su venta elabora dos tipos de bolsas: A y B. Las bolsas de tipo A contienen 3 kg de manzanas y 1 kg de naranjas; las bolsas de tipo B incluyen 2 kg de cada uno de los productos. El precio de venta de la bolsa A es de $4 \in y$ de $3 \in el$ de la bolsa de tipo B.

Suponiendo que vende todas las bolsas preparadas, ¿cuántas bolsas de cada tipo debe haber elaborado para maximizar los ingresos? ¿A cuánto asciende el ingreso máximo?

Resolución

Representamos en una tabla los datos del problema:

	nº de bolsas	kg de manzanas	kg de naranjas	ingresos (en €)
tipo A	X	3x	1x	4x
tipo B	y	2y	2y	3y
total		3x + 2y	x +2y	4x + 3y

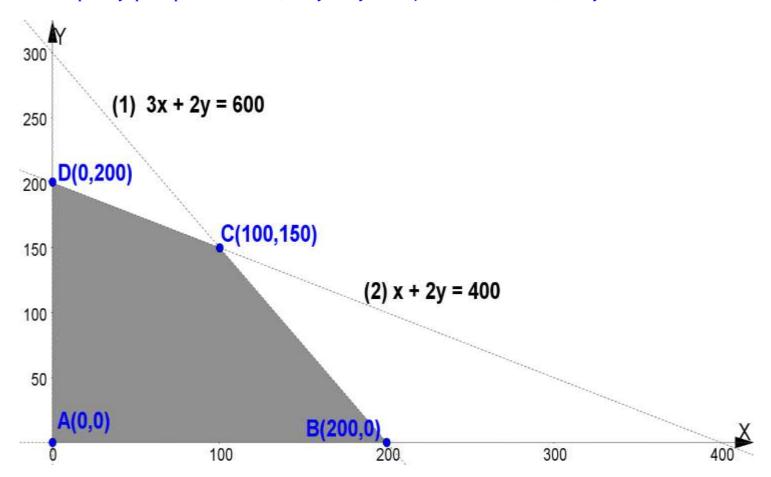
Las restricciones son $\begin{cases} 3x + 2y \le 600 \\ x + 2y \le 400 \\ x \ge 0, y \ge 0 \end{cases}$; función a optimizar (maximizar), ingresos: F(x, y) = 4x + 3y

Obtención de la región factible (resolvemos el sistema de inecuaciones):

$3x + 2y \le 600 \rightarrow \text{Recta: } 3x + 2y = 600$	$x + 2y \le 400 \rightarrow \text{Recta: } x + 2y = 400$	$x \ge 0 \rightarrow x = 0$ (eje Y)
		$(1,0) \rightarrow 1 \ge 0$ (cierto).
x = 0, $3.0 + 2y = 600$, $y = 300$	x = 0, $0 + 2y = 400$, $y = 200$	La solución es el
y = 0, $3x + 2$. $0 = 600$, $x = 200$	y = 0, $x + 2.0 = 400$, $x = 400$	semiplano cerrado que
x 0 200	x 0 400	contiene al (1, 0).
v 300 0	v 200 0	$y \ge 0 \rightarrow y = 0 \text{ (eje X)}$
		$(0,1) \rightarrow 1 \ge 0$ (cierto).
$(0,0) \rightarrow 3.0 + 2.0 \le 600$ (cierto).	$(0,0) \rightarrow 0 + 2.0 \le 400$ (cierto).	La solución es el
La solución es el semiplano cerrado que	La solución es el semiplano cerrado que	semiplano cerrado que
contiene al (0, 0).	contiene al (0, 0).	contiene al (0, 1).

<u>PAU – MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II – PROGRAMACIÓN LINEAL – ANDALUCÍA</u> <u>MODELOS DE 2015 RESUELTOS</u> Profesor: Rafael Núñez Nogales

Dibujamos los ejes de coordenadas y hacemos la escala adecuada teniendo en cuenta que en el eje X los valores que hay que representar son 0, 200 y 400 y en el eje Y los valores son 0, 200 y 300



Obtención de los vértices:

$$\begin{cases} y = 0 \\ x = 0 \end{cases} \to A(0,0) \qquad \begin{cases} 3x + 2y = 600 \\ y = 0 \end{cases} \to 3x + 2.0 = 600, x = 200 \to B(200,0)$$

$$\begin{cases} 3x + 2y = 600 \\ x + 2y = 400 \end{cases}$$
; restando, $2x = 200$, $x = 100$; $100 + 2y = 400$, $y = 150 \rightarrow C(100, 150)$

$$\begin{cases} x + 2y = 400 \\ x = 0 \end{cases} \to 0 + 2y = 400, y = 200 \to D(0, 200)$$

Veamos en qué vértices alcanza el valor máximo F(x, y) = 4x + 3y:

$$F(A) = F(0, 0) = 4.0 + 3.0 = 0$$
 $F(B) = F(200, 0) = 4.200 + 3.0 = 800$

$$F(C) = F(100, 150) = 4.100 + 3.150 = 850$$
 $F(D) = F(0, 200) = 4.0 + 3.200 = 600$

Luego, los ingresos máximos que se pueden obtener son $850 \notin y$ se alcanza para x = 100, y = 150.

<u>PAU – MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II – PROGRAMACIÓN LINEAL – ANDALUCÍA</u> MODELOS DE 2015 RESUELTOS Profesor: Rafael Núñez Nogales

- **3.- (prueba ordinaria)** Se dispone de 160 m de tejido de pana y 240 m de tejido de lana para hacer trajes y abrigos. Se usa 1 m de pana y 2 m de lana para cada traje, y 2 m de pana y 2 m de lana para cada abrigo. Cada traje se vende a 250 € y cada abrigo a 350 €.
- a) ¿Cuántos trajes y abrigos se deben confeccionar para obtener el máximo beneficio? ¿A cuánto asciende dicho beneficio?

Resolución

Representamos en una tabla los datos del problema:

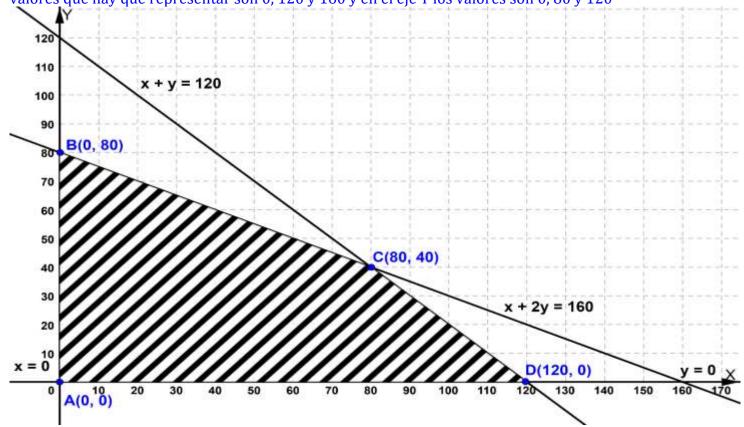
	nº de prendas	metros de pana	metros de lana	beneficio (en €)
trajes	X	1x	2x	250x
abrigos	y	<u>2</u> y	2y	350y
total		x + 2y	2x + 2y	250x + 350y

Las restricciones son
$$\begin{cases} x + 2y \le 160 \\ 2x + 2y \le 240 \xrightarrow{2} x + y \le 120 \\ x \ge 0, y \ge 0 \end{cases}$$

La función a optimizar (maximizar) es el beneficio: f(x, y) = 250x + 350y

Obtención de la región factible (resolvemos el sistema de inecuaciones):

Dibujamos los ejes de coordenadas y hacemos la escala adecuada teniendo en cuenta que en el eje X los valores que hay que representar son 0, 120 y 160 y en el eje Y los valores son 0, 80 y 120



<u>PAU – MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II – PROGRAMACIÓN LINEAL – ANDALUCÍA</u> <u>MODELOS DE 2015 RESUELTOS</u> Profesor: Rafael Núñez Nogales

Obtención de los vértices:

$$\begin{cases} y = 0 \\ x = 0 \end{cases} \to A(0,0) \qquad \begin{cases} x + 2y = 160 \\ x = 0 \end{cases} \to 0 + 2y = 160, y = 80 \to B(0,80)$$

$$\begin{cases} x + 2y = 160 \\ x + y = 120 \end{cases}; \text{ restando, } y = 40; x + 40 = 120, x = 80 \to C(80,40)$$

$$\begin{cases} x + y = 120 \\ y = 0 \end{cases} \to x + 0 = 120, x = 120 \to D(120,0)$$

Veamos en qué vértices alcanza el valor máximo f(x, y) = 250x + 350y:

$$f(A) = f(0, 0) = 250.0 + 350.0 = 0$$
 $f(B) = f(0, 80) = 250.0 + 350.80 = 28000$ $f(C) = f(80, 40) = 250.80 + 350.40 = 34000$ $f(D) = f(120, 0) = 250.120 + 350.0 = 30000$

Luego, el beneficio máximo es $34000 \notin y$ se alcanza para x = 80, y = 40.

Tendría que confeccionar 80 trajes y 40 abrigos para obtener un beneficio máximo de 34000 €

b) ¿Pueden hacerse 60 trajes y 50 abrigos con esas cantidades de tejido? En caso afirmativo, ¿obtendría el máximo beneficio al venderlo todo?

Resolución

Para que se pueda se deben cumplir todas las restricciones, $\begin{cases} x + 2y \le 160 \\ x + y \le 120 \\ x \ge 0, y \ge 0 \end{cases}$

Sustituyendo (60, 50) tenemos
$$\begin{cases} 60 + 2.50 \le 160 \ (si) \\ 60 + 50 \le 120 \ (si) \\ 60 \ge 0, \ 50 \ge 0 \ \ (si) \end{cases}$$

Luego, sí pueden hacerse y el beneficio sería f(60, 50) = 250.60 + 350.50 = 32000 €, que no es el beneficio máximo, pues el máximo beneficio es 34000 €

4.- (prueba ordinaria) Con motivo de su inauguración, una heladería quiere repartir dos tipos de tarrinas de helados.

El primer tipo de tarrina está compuesto por 100 g de helado de chocolate, 200 g de helado de straciatella y 1 barquillo. El segundo tipo llevará 150 g de helado de chocolate, 150 g de helado de straciatella y 2 barquillos. Sólo se dispone de 8 kg de helado de chocolate, 10 kg de helado de straciatella y 100 barquillos. ¿Cuántas tarrinas de cada tipo se deben preparar para repartir el máximo número posible de tarrinas?

Resolución

Representamos en una tabla los datos del problema:

	número	g de helado de chocolate	g de helado de straciatella	nº de barquillos
tarrina tipo I	X	100x	200x	1x
tarrina tipo II	y	150y	150y	2y
total	x + y	100x + 150y	200x + 150y	x + 2y

Las restricciones son
$$\begin{cases} 100x + 150y \le 8000 \xrightarrow{:50} 2x + 3y \le 160 \\ 200x + 150y \le 10000 \xrightarrow{:50} 4x + 3y \le 200 \\ x + 2y \le 100 \\ x \ge 0, y \ge 0 \end{cases}$$

La función a optimizar (maximizar) es el total de tarrinas: f(x, y) = x + y

<u>PAU – MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II – PROGRAMACIÓN LINEAL – ANDALUCÍA</u> MODELOS DE 2015 RESUELTOS Profesor: Rafael Núñez Nogales

Obtención de la región factible (resolvemos el sistema de inecuaciones):

$$2x + 3y \le 160 \rightarrow \text{Recta: } 2x + 3y = 160$$

 $x = 20, \quad 2.20 + 3y = 160, \quad y = 40$
 $y = 0, \quad 2x + 3.0 = 160, \quad x = 80$
 $\begin{array}{c|cccc} x & 20 & 80 \\ \hline y & 40 & 0 \end{array}$

 $(0,0) \rightarrow 2.0 + 3.0 \le 160$ (cierto). La solución es el semiplano cerrado que contiene al (0,0).

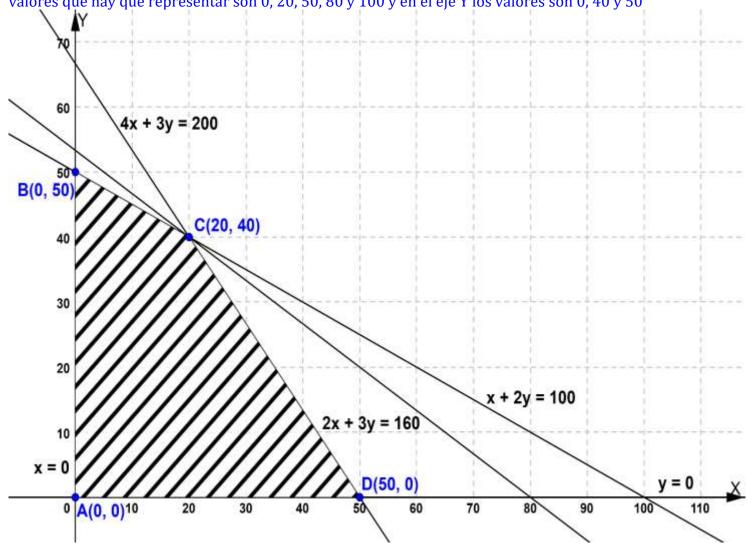
$$4x + 3y \le 200 \rightarrow \text{Recta: } 4x + 3y = 200$$

 $x = 20, \quad 4.20 + 3y = 200, \quad y = 40$
 $y = 0, \quad 4x + 3.0 = 200, \quad x = 50$
 $\begin{array}{c|cccc} x & 20 & 50 \\ \hline y & 40 & 0 \end{array}$

 $(0,0) \rightarrow 4.0 + 3.0 \le 200$ (cierto). La solución es el semiplano cerrado que contiene al (0,0).

contiene at (0, 0).	
$x = 0, 0 + 2y = 100, y = 50$ $y = 0, x + 2.0 = 100, x = 100$ $ \begin{array}{c cccc} x & 0 & 100 \\ \hline x & 0 & 100 \\ \hline y & 50 & 0 \end{array} $ (0.0) $\rightarrow 0 + 2.0 < 100$ (cierto).	$z \ge 0 \to x = 0$ (eje Y) $z \ge 0 \to x = 0$ (cierto). La solución es el semiplano cerrado Lue contiene al $z \ge 0$ (eje X) $z \ge 0 \to y = 0$ (eje X) $z \ge 0 \to y = 0$ (cierto). La solución es el semiplano cerrado Lue contiene al $z \ge 0$

Dibujamos los ejes de coordenadas y hacemos la escala adecuada teniendo en cuenta que en el eje X los valores que hay que representar son 0, 20, 50, 80 y 100 y en el eje Y los valores son 0, 40 y 50



PAU – MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II – PROGRAMACIÓN LINEAL – ANDALUCÍA **MODELOS DE 2015 RESUELTOS** Profesor: Rafael Núñez Nogales

Obtención de los vértices:

$$\begin{cases} y = 0 \\ x = 0 \end{cases} \to A(0,0) \qquad \begin{cases} x + 2y = 100 \\ x = 0 \end{cases} \to 0 + 2y = 100, y = 50 \to B(0,50)$$

$$\begin{cases} x + 2y = 100 \\ 2x + 3y = 160 \end{cases}$$
; restando las ecuaciones $2^{\underline{a}} y 3^{\underline{a}}$, $2x = 40$, $x = 20$; $20 + 2y = 100$, $y = 40 \rightarrow C(20, 40)$ $4x + 3y = 200$

2.20 + 3.40 = 160 (sí) 4.20 + 3.40 = 200 (sí) Se puede comprobar que x = 20, y = 40 cumple todas las ecuaciones,

$$\begin{cases} 4x + 3y = 200 \\ y = 0 \end{cases} \to 4x + 3.0 = 200, x = 50 \to D(50, 0)$$

Veamos en qué vértices alcanza el valor máximo f(x, y) = x + y:

$$f(A) = f(0, 0) = 0 + 0 = 0$$

$$f(B) = f(0, 50) = 0 + 5 = 50$$

$$f(C) = f(20, 40) = 20 + 40 = 60$$
 $f(D) = f(50, 0) = 50 + 0 = 50$

$$f(D) = f(50, 0) = 50 + 0 = 50$$

Luego, el valor máximo es 60 y se alcanza para x = 20, y = 40.

La solución es el semiplano cerrado que contiene al (0, 0).

El máximo número máximo de tarrinas es 60 y se obtiene haciendo 20 del primer tipo y 40 del segundo

5.- Sea el siguiente conjunto de inecuaciones: $x - 3y \le 8$, $3x + 2y \ge 15$, $x + 3y \le 12$, $x \ge 0$, $y \ge 0$ a) Dibuje el recinto del plano determinado por estas inecuaciones.

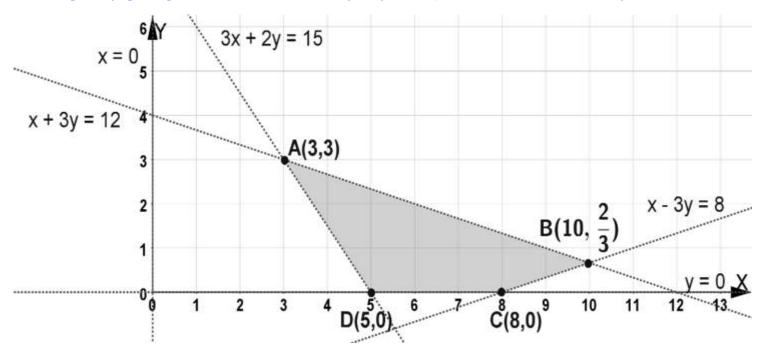
Resolución

Resolvemos el sistema de inecuaciones:

$$x - 3y \le 8 \to \text{Recta: } x - 3y = 8$$
 $x = -1, -1 - 3y = 8, y = -3$ $y = 0, x - 3.0 = 8, x = 8$ $x = 1, 3.1 + 2y = 15, y = 6$ $x = 1, 3.1 + 2y = 15, x = 5$ $x = 1, 3.1 + 2y = 15, x = 15, x = 15$ $x = 1, 3.1 + 2y = 15, x = 1, 3.1 + 2y = 15, x = 15$ $x = 1, 3.1 + 2,$

$$x + 3y \le 12 \rightarrow \text{Recta: } x + 3y = 12$$
 $x = 0, \quad 0 + 3y = 12, \quad y = 4$
 $y = 0, \quad x + 3.0 = 12, \quad x = 12$
 $x = 0, \quad 0 + 3y = 12, \quad y = 4$
 $y = 0, \quad 0 + 3y = 12, \quad 0 = 12, \quad 0 = 12$
 $y = 0, \quad 0 + 3y = 12, \quad 0 = 12, \quad 0 = 12$
 $y = 0, \quad 0 + 3y = 12, \quad 0 = 12$
 $y = 0, \quad 0 + 3y = 12, \quad 0 = 12$
 $y = 0, \quad 0 = 12, \quad 0 = 12$
 $y = 0, \quad 0 = 12, \quad 0 = 12$
 $y = 0, \quad 0 = 12, \quad 0 = 12$
 $y = 0, \quad 0 = 12, \quad 0 = 12$
 $y = 0, \quad 0 = 12$
 $y = 0$

Dibujamos los ejes de coordenadas y hacemos la escala adecuada teniendo en cuenta que en el eje X los valores que hay que representar son -1, 0, 1, 5, 8 y 12 y en el eje Y los valores son -3, 0, 4 y 6



b) Determine los vértices de este recinto.

Resolución

Obtención de los vértices:

$$\begin{cases} x + 3y = 12 \xrightarrow{\cdot \ 3} \begin{cases} 3x + 9y = 36 \\ 3x + 2y = 15 \end{cases}; \text{ restando, } 7y = 21, y = 3; x + 3.3 = 12, x = 3 \rightarrow A(3,3) \end{cases}$$

$$\begin{cases} x + 3y = 12 \\ x - 3y = 8 \end{cases}$$
; restando, $6y = 4$, $y = \frac{4}{6} = \frac{2}{3}$; $x + 3\frac{2}{3} = 12$, $x = 10 \rightarrow B\left(10, \frac{2}{3}\right)$

$$\begin{cases} x - 3y = 8 \\ y = 0 \end{cases} \to x - 3.0 = 8, x = 8 \to C(8, 0)$$

$$\begin{cases} 3x + 2y = 15 \\ y = 0 \end{cases} \to 3x + 2.0 = 15, x = 5 \to D(5,0)$$

c) Maximice la función F(x, y) = 5x + 9y en este recinto, indicando el punto o puntos donde se alcanza ese máximo.

Resolución

Veamos en qué vértices alcanza el valor máximo F(x, y) = 5x + 9y:

$$F(A) = F(3,3) = 5.3 + 9.3 = 42$$
 $F(B) = F\left(10, \frac{2}{3}\right) = 5.10 + 9\frac{2}{3} = 56$

$$F(C) = F(8, 0) = 5.8 + 9.0 = 40$$
 $F(D) = F(5, 0) = 5.5 + 9.0 = 25$

Luego, el valor máximo es 56 y se alcanza para x = 10, $y = \frac{2}{3}$

6.- Se desea invertir 100000 € en dos productos financieros A y B que tienen una rentabilidad del 2% y del 2,5% respectivamente. Se sabe que el producto B exige una inversión mínima de 10000 € y, por cuestiones de riesgo, no se desea que la inversión en B supere el triple de lo invertido en A. ¿Cuánto se debe invertir en cada producto para que el beneficio sea máximo y cuál sería dicho beneficio?

Resolución

Representamos en una tabla los datos del problema:

	cantidad invertida (en €)	beneficio o rentabilidad (en €)
producto A	X	0,02x
producto B	y	0,025y
total	x + y	0.02x + 0.025y

Las restricciones son
$$\begin{cases} x + y \le 100000 \\ y \ge 10000 \\ y \le 3x \\ x \ge 0, y \ge 0 \end{cases}$$

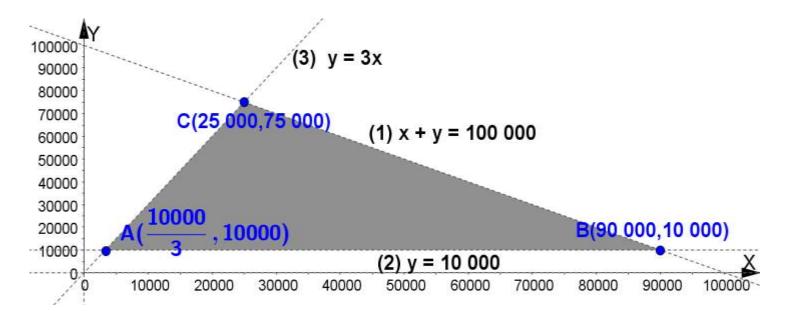
La función a optimizar (maximizar) es el beneficio: f(x, y) = 0.02x + 0.025y

Obtención de la región factible (resolvemos el sistema de inecuaciones):

$y \le 3x \rightarrow \text{Recta: } y = 3x$ x = 0, y = 3.0, y = 0 y = 30000, 30000 = 3x, x = 10000 x = 0 10000 y = 0 30000	$x \ge 0 \rightarrow x = 0$ (eje Y) $(1, 0) \rightarrow 1 \ge 0$ (cierto). La solución es el semiplano cerrado que contiene al $(1, 0)$. $y \ge 0 \rightarrow y = 0$ (eje X) $(0, 1) \rightarrow 1 \ge 0$ (cierto). La solución es el semiplano cerrado
$(1, 0) \rightarrow 0 \le 3.1$ (cierto). La solución es el semiplano cerrado que contiene al $(1, 0)$.	La solución es el semiplano cerrado que contiene al (0, 1).

PAU – MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II – PROGRAMACIÓN LINEAL – ANDALUCÍA MODELOS DE 2015 RESUELTOS Profesor: Rafael Núñez Nogales

Dibujamos los ejes de coordenadas y hacemos la escala adecuada teniendo en cuenta que en el eje X los valores que hay que representar son 0, 10000 y 100000 y en el eje Y los valores son 0, 10000, 30000 y 100000



Obtención de los vértices:

$$\begin{cases} y = 3x \\ y = 10000 \end{cases}; \ 3x = 10000, x = \frac{10000}{3} \to A\left(\frac{10000}{3}, 10000\right)$$

$$\begin{cases} x + y = 100000 \\ y = 10000 \end{cases}; \ x + 10000 = 100000, x = 90000 \to B(90000, 10000)$$

$$\begin{cases} x + y = 100000 \\ y = 3x \end{cases}; \ x + 3x = 100000, x = 25000; Y = 3.25000 = 75000 \to C(25000, 75000)$$

Veamos en qué vértices alcanza el valor máximo f(x, y) = 0.02x + 0.025y:

$$F(A) = F\left(\frac{10000}{3}, 10000\right) = 0.02 \frac{10000}{3} + 0.025.10000 = \frac{200}{3} + 250 = \frac{950}{3} \approx 316.67$$

$$f(B) = f(90000, 10000) = 0,02.90000 + 0,025.10000 = 2050$$

$$f(C) = f(25000, 75000) = 0.02.25000 + 0.025.75000 = 2375$$

Luego, el valor máximo es 2375 y se alcanza para x = 25000, y = 75000

Debe invertir 25000 € en A y 75000 € en B, obteniendo entonces un beneficio máximo de 2375 €.