Números primos de la forma n! – 1 (factorial de un número menos uno)

El factorial de un número n se define de la siguiente forma: n! = n*(n-1)*(n-2)*(n-3)*….*3*2*1. Así el factorial de 5, 5!, es 5! = 5*4*3*2*1 = 120. Representa el número de permutaciones ordinarias de n elementos (forma de ordenar n elementos distintos cogiéndolos a todos ellos). Se define 0! = 1 y 1! = 1.

Ejemplo: si queremos ver las permutaciones de los elementos A, B, C y D, tendríamos que estas son 4! = 4*3*2*1 = 24 ; es decir, estas:

ABCD, ABDC, ACBD, ACDB, ADBC, ADCB, BACD, BADC, BCAD, BCDA, BDAC, BDCA, CABD, CADB, CBAD, CBDA, CDAB, CDBA, DABC, DACB, DBAC, DBCA, DCAB, DCBA.

Ahora bien:

Si hacemos el factorial de un natural y le quitamos una unidad obtendremos un número de la forma n! – 1 que se corresponde con un número natural. 

Por ejemplo: 4! – 1 = 23 (que resulta ser primo).

¿cuál es el número primo mayor hasta la fecha que se corresponde con esa forma: factorial de un natural n menos uno?

Observa la siguiente ilustración (traducción debajo):

 

Traducción: "Este es el número primo más grande conocido de la forma n!-1, con 23560 dígitos: 6917! - 1. Hasta ahora,
solo hay 21 números primos conocidos de este tipo. Curiosamente, esta propiedad parece bastante común para n pequeños
como n = 3, 4, 6, 7, 12, 14, etc., pero se vuelve extremadamente rara para n más grandes.
¡Divertirse!"

 

José Antonio Cobalea Ruiz

Profesor de Matemáticas en el IES Huelin de Málaga (España).

También te podría gustar...

Deja una respuesta

Descripción general de privacidad

Este sitio web utiliza cookies para que podamos brindarle la mejor experiencia de usuario posible. La información de las cookies se almacena en su navegador y realiza funciones como reconocerlo cuando regresa a nuestro sitio web y ayudar a nuestro equipo a comprender qué secciones del sitio web le resultan más interesantes y útiles.