marzo 2021

Universo matemático. Capítulo 9.

Mujeres matemáticas.

La serie “Universo matemático” fue creada por el profesor Antonio Pérez Sanz y producida por RTVE en 2000. Ahora RTVE la pone a disposición de los docentes a través de su menú “a la carta”.

Haz click sobre la imagen inferior para verlo. 

Carl Sagan

 
«En algún lugar, alguna cosa increíble aguarda a ser descubierta».
 
Carl Edward Sagan.
Nueva York, 9 de noviembre de 1934 – Washington, 20 de diciembre de 1996.
Astrónomo, escritor, profesor y divulgador científico estadounidense.

Curvas de Lissajous

Este grupo de curvas algebraicas fue estudiado en primer lugar por Nathaniel Bowditch (1773-1838) y, posteriormente por Jules Antoine Lissajous (1822-1880).

Haz «click» sobre la imagen para abrir la construcción de GeoGebra.

Cálculo mental con el número π

Sabiendo que la longitud de una circunferencia se calcula con la fórmula: L=2πr y que el área del círculo se obtiene con la fórmula A=πr2, realiza mentalmente las siguientes actividades dando el resultado en función del número π:

     Actividad 1.

a) Calcula la longitud de la circunferencia cuando r = 1 cm.

b) Calcula el área del círculo cuando r = 1 cm.

     Actividad 2.

a) Calcula la longitud de la circunferencia cuando r = π cm.

b) Calcula el área del círculo cuando r = π cm.

     Actividad 3.

a) Calcula la longitud de la circunferencia cuando r = π2 cm.

b) Calcula el área del círculo cuando r = π2 cm.

     Actividad 4.

a) Calcula la longitud de la circunferencia cuando r = 1/π cm.

b) Calcula el área del círculo cuando r = 1/π cm.

     Actividad 5.

a) ¿Cuál es el valor de r para que la longitud de la circunferencia sea 1 cm?

b) ¿Cuál es el valor de r para que el área del círculo sea 1 cm2?

     Actividad 6.

a) ¿Cuál es el valor de r para que la longitud de la circunferencia sea π cm?

b) ¿Cuál es el valor de r para que el área del círculo sea π cm2?

     Actividad 7.

a) ¿Cuál es el valor de r para que la longitud de la circunferencia sea π2 cm?

b) ¿Cuál es el valor de r para que el área del círculo sea π2 cm2?

     Actividad 8.

a) ¿Para qué valor de r coinciden la longitud y el área?

b) ¿Para qué valor de r la longitud de la circunferencia es el doble del área del círculo?

c) ¿Para qué valor de r el área del círculo es el doble de la longitud de la circunferencia?

     Actividad 9.

a) ¿Cuál debe ser la longitud del lado de un cuadrado para que tenga la misma superficie que una circunferencia de radio r?

b) ¿Cuál debe ser la longitud del radio de una circunferencia para que tenga la misma superficie que un cuadrado de lado l?

Teorema de Pitágoras

El Teorema de Pitágoras afirma que en cualquier triángulo rectángulo, el área del cuadrado construido sobre la hipotenusa es igual a la suma de las áreas de los cuadrados construidos sobre los catetos.

Para comprobarlo, construye con las cinco piezas dos cuadrados de lados cada uno de los catetos y, posteriormente, construye con las cinco piezas un cuadrado construido sobre la hipotenusa.

• Para desplazarlas se utiliza el punto de color negro que hay en cada una. (Una vez seleccionada una pieza, se puede desplazar con mayor precisión utilizando las flechas de dirección).

• Para girarlas se utiliza el punto de color blanco que tiene cada pieza en un vértice.

(Haciendo «click» sobre la imagen puedes practicar con el puzle realizado en GeoGebra).

El tren

 

Un tren de un kilómetro y medio de largo atraviesa un túnel de tres kilómetros. Si se desplaza a una velocidad de un kilómetro por minuto, ¿cuánto tiempo tardará el tren en atravesar completamente el túnel?

Pelotas de tenis

 

Un bote contiene tres pelotas de tenis como se observa en la figura. Las pelotas son tangentes entre sí, tangentes a las bases y al lateral del bote. ¿Qué es mayor, la longitud de la circunferencia de la base o la altura del bote?

Cuadrados perfectos capicúas

Un número cuadrado perfecto es un número que tiene raíz cuadrada exacta.

Un número capicúa es un número que se lee igual de izquierda a derecha que de derecha a izquierda.

• Hay algunos números capicúas que al elevarlos al cuadrado dan lugar a un cuadrado perfecto que también es capicúa. Por ejemplo:

112 = 121 2022 = 40804
222 = 484 2122 = 44944
1012 = 10201 10012 = 1002001
1112 = 12321 11112 = 1234321
1212 = 14641 20022 = 4008004

· · ·

• Pero también se pueden obtener cuadrados perfectos capicúas al elevar al cuadrado números no capicúas. Por ejemplo:

262 = 676 8362 = 698896
2642 = 69696 22852 = 5221225
3072 = 94249 26362 = 6948496

 

Cuadrado mágico de orden 6

La constante mágica de un cuadrado mágico de orden 6 se puede calcular sumando todos los números utilizados y dividiendo la suma por 6. Por ejemplo, la constante mágica de un cuadrado de orden 6 con los treinta y seis primeros números naturales es:

La suma de las seis filas, las seis columnas y las dos diagonales principales es 111. 

Descripción general de privacidad

Este sitio web utiliza cookies para que podamos brindarle la mejor experiencia de usuario posible. La información de las cookies se almacena en su navegador y realiza funciones como reconocerlo cuando regresa a nuestro sitio web y ayudar a nuestro equipo a comprender qué secciones del sitio web le resultan más interesantes y útiles.